• Title/Summary/Keyword: enzymatic extract

Search Result 281, Processing Time 0.031 seconds

Hyphal Growth Inhibition by Deer Antler Extract Mimics the Effect of Chitin Synthase Deletion in Candida albicans

  • Park, Hyun-Sook;Jhon, Gil-Ja;Choi, Won-Ja
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.4
    • /
    • pp.422-425
    • /
    • 1998
  • Chitin synthase null-mutants propagate in yeast form in RPMI medium with suppression of hyphal growth. This hyphal suppression is also observed in the wild type culture grown in RPMI medium supplemented with deer antler extract. To identify the possible target of deer antler extract, the enzymatic activities of chitin synthases were examined. The enzymatic activities of three chitin synthases, CAChsl, CAChs2, and CAChs3, were found to be differentially inhibited by deer antler extract. Of them, CAChsl, was the most sensitive to the extract. These results indicate that deer antler extract causes hyphal suppression, which resembles the effects of chitin synthase deletion, probably through direct inhibition of chitin synthases.

  • PDF

Production of kaempferol by enzymatic hydrolysis of tea seed extract (차 부산물로부터 효소를 이용한 캠페롤 생산)

  • Lim, Yun-Young;Kim, Eun-Ki
    • KSBB Journal
    • /
    • v.23 no.2
    • /
    • pp.131-134
    • /
    • 2008
  • Tea seed extract, a byproduct of tea processing, contains two kaempferol glycosides, camelliaside A and camelliaside B. Kaempferol was produced by enzymatic hydrolysis of glycosides. Optimum reaction conditions were investigated. $Pectinex^{(R)}100L$ was effective, producing kaempferol in 48 hrs. Optimum temperature and pH were $40^{\circ}C$ and 4, respectively. Ratio of substrate and enzyme affected the yield. Under optimum conditions, 1.6g kaempferol per 1 kg tea seed extract was produced and 80% of kaempferol precipitated. This result shows that kaempferol could be produced mildly and effectively using tea-processing byproduct.

Production of Yeast Extract by a Combined Method of Autolysis and Enzymatic Hydrolysis (자기소화와 효소가수분해 방법을 병용한 효모 추출물의 제조)

  • 인만진;채희정
    • KSBB Journal
    • /
    • v.19 no.4
    • /
    • pp.245-249
    • /
    • 2004
  • A combined method of autolysis and enzymatic hydrolysis of baker's yeast was developed for the production of yeast extract, which is widely used as a natural food ingredient. From statistical analysis, NaCl and ethanol addition were found to be significantly effective factors in autolysis of yeast. The optimum dosages of salt and ethanol were 3% and 1%, respectively. Heat treatment and the use of cell lytic enzyme were not significantly effecting on the autolysis. Yeast hydrolysate was prepared by autolysis, followed by enzymatic hydrolysis using proteases, nuclease and deaminase. Additionally, the hydrolysate was processed by downstream process including Maillard reaction and debittering. The total dry matter yield and total nitrogen yield for the process were 76% and 59%, respectively. Compared to a process using brewer's yeast, when baker's yeast was used as a raw material, a higher recovery yield was obtained.

Study on the Change of Antioxidant Activity by Enzymatic Hydrolysis in Sophora japonica Linne, Houttuynia cordata Thunberg, Leonurus japonicus Houttuyn (괴화, 어성초, 익모초에서 효소 분해에 의한 항산화 활성 변화 연구)

  • Cha, Bae Cheon
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • Objectives: The enzymatic hydrolysis is one of the processing methods that improve its effectiveness on medicinal herbs. In this research, changes in ingredients and activity by enzymatic hydrolysis were studied. Methods: For this study, a carbohydrate hydrolase such as viscozyme, which converts glycosides to aglycone, was applied to induce constituent changes in Sophora japonica Linne, Houttuynia cordata Thunberg and Leonurus japonicus Houttuyn. Changes in antioxidant activity were measured using the 1,1-diphenyl-2-picrylhydrazl (DPPH) method, and changes in ingredients were analyzed by high performance liquid chromatography. Results: As a result of enzymatic hydrolysis, the content of quercetin was increased from 1.26 mg/g to 29.66 mg/g in Sophora japonica Linne, from 0 mg/g to 0.66 mg/g in Houttuynia cordata Thunberg and from 0.43 mg/g to 0.71 mg/g in Leonurus japonicus Houttuyn. As a result of the antioxidant experimentation, the IC50 of Sophora japonica Linne decreased from 5 ug/ml (MeOH extract) and 9.1 ug/ml (EtOAc fraction) to 3.0 ug/ml, Houttuynia cordata Thunberg decreased from 15.6 ug/ml (MeOH extract) and 13.6 ug/ml (EtOAc fraction) to 11.2 ug/ml, and Leonurus japonicus Houttuyn decreased from 14.4 ug/ml (MeOH extract) and 12.6 ug/ml (EtOAc fraction) to 10.2 ug/ml. Conclusion: In conclusion, it was confirmed that glycoside rutin contained in the three medicinal herbs was changed to quercetin which is the aglycone, by the enzymatic hydrolysis using viscozyme. In terms of antioxidant activity, Sophora japonica Linne showed a significant antioxidant activity value that closes to the control group butylated hydroxyanisole. Houttuynia cordata Thunberg and Leonurus japonicus Houttuyn showed a minor increase in antioxidant activity.

A Enzymatical Characteristics Study of Kyenegum (계내금(鷄內金)의 효소학적 특성 연구)

  • Kim, Do-Wan
    • The Korea Journal of Herbology
    • /
    • v.22 no.4
    • /
    • pp.29-34
    • /
    • 2007
  • Objective : Kyenegum(Galli Stomachichum Corium) has been popularly used long as the digestive. The purpose of this study was to investigate the enzymatic characteristic of Kyenegum crude enzyme. Methods : To evaluate of the enzymatic characteristic of Kyenegum, we examined the activity of Kyenegum crude enzyme from optimum solvent, optimum temperature and pH of crude Kyenegum extract. Futhermore, we examined the effects of NaCI and acidity of crude Kyenegum extract. Results : The Kyenegum was composed with crude protein about 20%, crude lipid 2%. The optimum Kyenegum dry condition, optimum extract solvent, optimum temperature and optimum pH were $4{\sim}6$ hours at $60^{\circ}C$, commercial apple vinegar, $50^{\circ}C$ and 2.0. Conclusion : The result suggests that the Kyenegum crude enzyme extract very strong enzyme in temperature, NaCl and acidity, respectively.

  • PDF

Enzymatic transformation of ginsenosides in Korean Red Ginseng (Panax ginseng Meyer) extract prepared by Spezyme and Optidex

  • Choi, Hyeon-Son;Kim, Sun Young;Park, Yooheon;Jung, Eun Young;Suh, Hyung Joo
    • Journal of Ginseng Research
    • /
    • v.38 no.4
    • /
    • pp.264-269
    • /
    • 2014
  • Background: In this study, we examined the effects of various enzymes on chemical conversions of ginsenosides in ginseng extract prepared by amylases. Methods: Rapidase, Econase CE, Viscozyme, Ultraflo L, and Cytolase PCL5 were used for secondary enzymatic hydrolysis after amylase treatment of ginseng extract, and ginsenoside contents, skin permeability, and chemical compositions including total sugar, acidic polysaccharide, and polyphenols were determined on the hydrolyzed ginseng extract. Results: Rapidase treatment significantly elevated total ginsenoside contents compared with the control (p < 0.05). In particular, deglycosylated ginsenosides including Rg3, which are known as bioactive compounds, were significantly increased after Rapidase treatment (p < 0.05). The Rapidase-treated group also increased the skin permeability of polyphenols compared with the control, showing the highest level of total sugar content among the enzyme treatment groups. Conclusion: This result showed that Rapidase induced the conversion of ginsenoside glycosides to aglycones. Meanwhile, Cytolase PCL5 and Econase treatments led to a significant increase of uronic acid (acidic polysaccharide) level. Taken together, our data showed that the treatments of enzymes including Rapidase are useful for the conversion and increase of ginsenosides in ginseng extracts or products.

Antioxidant Activities of the Ethanol Extract of Hamcho (Salicornia herbacea L.) Cake Prepared by Enzymatic Treatment

  • Oh, Ji-Hae;Kim, Eun-Ok;Lee, Sung-Kwon;Woo, Mee-Hee;Choi, Sang-Won
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.90-98
    • /
    • 2007
  • The antioxidant activities of water ($H_2O$) and ethanol (EtOH) extracts from hamcho (Salicornia herbacea L.) juice and cake prepared by enzymatic treatments were evaluated by in vitro assays against DPPH, superoxide, and hydroxyl radicals. Among the $H_2O$ and EtOH extracts from five different carbohydrases treated, the EtOH extract from viscozyme-treated hamcho cake had higher yield and phenolic content, and exhibited the strongest radical scavenging activity against DPPH ($IC_{50}=186.91\;{\mu}g/mL$), superoxide ($IC_{50}=87.54\;{\mu}g/mL$), and hydroxyl radicals ($IC_{50}=367.07\;{\mu}g/mL$). Antioxidant assay-guided fractionation and purification of the EtOH extract led to isolation and identification of five phenolic compounds, procatechuic, ferulic and caffeic acids, quercetin, and isorhamnetin. Most of these phenolic compounds exhibited considerable DPPH, superoxide, and hydroxyl radical scavenging activities, and in particular, caffeic and ferulic acids had stronger superoxide and hydroxyl radical scavenging activities than the well-known antioxidant radical scavenger, (+)-catechin (p<0.05). Quercetin and isorhamnetin were the primary compounds responsible for the strong antioxidant activity in the EtOH extract of the viscozyme-treated hamcho cake. Meanwhile, these five phenolic compounds were detected in the EtOH extract of the viscozyme-treated hamcho cake at the following levels (dry base of hamcho); procatechuic acid (1.54 mg%), caffeic acid (6.87 mg%), ferulic acid (8.45 mg%), quercetin (12.63 mg%), and isorhamnetin (6.65 mg%). However, three of these phenolic compounds (procatechuic, caffeic acid, and ferulic acids) were detectable in the $H_2O$ extract of viscozyme-treated hamcho juice. These results suggest that the EtOH extract of viscozyme-treated hamcho cake may be a potential source of natural antioxidants.

Antioxidant activity of extracts from Blueberry (블루베리 추출물의 항산화 활성)

  • O, Jae-Yeong;Kang, Na-Lae;Kang, Seong-Woong;Song, Hyung-Yong;Kim, Hyeon-A;Hwang, Eun-Yeong;Jeon, You-Jin
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11b
    • /
    • pp.744-747
    • /
    • 2010
  • In this study, antioxidant activity of enzymatic, ethanolic and aqueous extract from Blueberry were evaluated by measuring the scavenging activity on 1,1-diphenyl-2-picrylhydrazyl (DPPH). Enzymatic extract were prepared by enzymatic hydrolysis of Blueberry using food grade five different carbohydrases (Viscozyme, celluclast, AMG, Termarmyl, Ultraflo) and five proteases (Protamex, Kojizyme, Neutrase, Flavourzyme, Alcalase). The ethanol extract were lower than enzymatic extracts in yield, but higher in ployphenolic contents. The 70% ethanolic extract of Blueberry exhibited better DPPH radical scavenging activity compared to those of other extracts. These results suggest that Blueberry would be a good raw materials for antioxidant.

  • PDF

Anti-obesity effects of an enzymatic extract of mandarin (Citrus unshiu) peel in 3T3-L1 adipocytes (감귤피 효소적 추출물의 지방세포에서의 항비만 효과)

  • Jang, Yebin;Kang, Heejoo;Kim, Jusang;Lee, Seung-Hong
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.2
    • /
    • pp.149-153
    • /
    • 2021
  • Mandarin peel (MP) is a by-product of the processing of citrus juice or other products. This study aimed to investigate the potential anti-obesity effect of an enzymatic extract of MP on the inhibition of adipogenesis in 3T3-L1 adipocytes. The enzymatic extract (MPCE) was prepared using the commercial food-grade carbohydrase Celluclast. Lipid accumulation and triglyceride levels were significantly lower in MPCE-treated cells than in untreated cells. In addition, MPCE treatment reduced the protein expression levels of peroxisome proliferator-activated receptor-γ, CCAAT/enhancer-binding protein α, sterol regulatory element-binding protein 1, and fatty acid-binding protein 4. These results suggest that MPCE inhibits adipogenesis by downregulating the expression levels of adipogenesis-related proteins. Therefore, the current findings demonstrate that MPCE possesses potent anti-obesity properties and could be a potential ingredient in functional food industries.