• 제목/요약/키워드: enzymatic antioxidant

검색결과 253건 처리시간 0.029초

야생당근(Daucus carota L.) 주스를 첨가한 개호식품(젤리) 제조 및 품질 특성 (Quality Characteristics of Care Food (Jelly) Prepared with Wild Carrot (Daucus carota L.) Juice)

  • 강희선;김민주;노정옥;최형일;한명륜;명정호;김애정
    • 대한영양사협회학술지
    • /
    • 제23권4호
    • /
    • pp.337-349
    • /
    • 2017
  • This study evaluated the quality characteristics of jelly prepared with different levels (0%, 5%, 10%, 15%, 20%, and 25%) of wild carrot (WC, Daucus carota L.) juice as a care food for the elderly. The lightness, redness, yellowness, and delta (${\Delta}$) values of the jelly (Control, WCJ5, WCJ10, WCJ15, WCJ20, and WCJ25) decreased with increasing amounts of wild carrot juice added. The mechanical properties, such as hardness, springiness, chewiness, and gumminess, of the jelly were decreased with increasing amounts of wild carrot juice added. The total polyphenol and total flavonoid contents of the jelly increased with increasing amounts of wild carrot juice added. The DPPH radical scavenging activity ($IC_{50}$) also increased with increasing amounts of wild carrot juice added. The ${\alpha}$-glucosidase inhibitory effects of wild carrot (WC) and WCJ25 were 71% and 54.4%, respectively, compared to the positive control (acarbose). The lipase inhibitory effects of WC and WCJ25 were 44.2% and 14.4%, respectively, compared to the positive control group (orlistat). On the other hand, the sensory evaluation score was the best at WCJ20, which contained 20% wild carrot juice. In conclusion, WCJ20 or WCJ25 is expected to be a care food for the elderly with respect to texture as well as the antioxidant and enzymatic activity (${\alpha}$-glucosidase inhibitory and lipase inhibitory activities).

Improved Resistance to Oxidative Stress by a Loss-of-Function Mutation in the Arabidopsis UGT71C1 Gene

  • Lim, Chae Eun;Choi, Jung Nam;Kim, In A;Lee, Shin Ae;Hwang, Yong-Sic;Lee, Choong Hwan;Lim, Jun
    • Molecules and Cells
    • /
    • 제25권3호
    • /
    • pp.368-375
    • /
    • 2008
  • Approximately 120 UDP-glycosyltransferases (UGTs), which are classified into 14 distinct groups (A to N), have been annotated in the Arabidopsis genome. UGTs catalyze the transfer of sugars to various acceptor molecules including flavonoids. Previously, UGT71C1 was shown to glycosylate the 3-OH of hydroxycinnamates and flavonoids in vitro. Such secondary metabolites are known to play important roles in plant growth and development. To help define the role of UGT71C1 in planta, we investigated its expression patterns, and isolated and characterized a loss-of-function mutation in the UGT71C1 gene (named ugt71c1-1). Our analyses by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR), microarray data mining, and histochemical detection of GUS activity driven by the UGT71C1 promoter region, revealed the tissue-specific expression patterns of UGT71C1 with highest expression in roots. Interestingly, upon treatment with methyl viologen (MV, paraquat), ugt71c1-1 plants displayed enhanced resistance to oxidative stress, and ROS scavenging activity was higher than normal. Metabolite profiling revealed that the levels of two major glycosides of quercetin and kaempferol were reduced in ugt71c1-1 plants. In addition, when exposed to MV-induced oxidative stress, eight representative ROS response genes were expressed at lower levels in ugt71c1-1 plants, indicating that ugt71c1-1 probably has higher non-enzymatic antioxidant activity. Taken together, our results indicate that ugt71c1-1 has increased resistance to oxidative stress, suggesting that UGT71C1 plays a role in some glycosylation pathways affecting secondary metabolites such as flavonoids in response to oxidative stress.

Healing and preventive effects of low-esterified pectin on liver injury induced by carbon tetrachloride in rats

  • Khotimchenko, Yuri S.;Kolenchenko, Elena A.;Khotimchenko, Maxim Y.;Kovalev, Valeri V.
    • Advances in Traditional Medicine
    • /
    • 제4권1호
    • /
    • pp.28-36
    • /
    • 2004
  • The purpose of this study was to investigate the pharmacological effects of low-esterified pectin on carbon tetrachloride $(CCL_4)-induced$ hepatotoxicity in rats. The study included two experiments. In the first experiment the animals were given daily $CCL_4$ through gavage for 7 days and then 10, 50, or 250 mg/kg b.w. of pectin for 21 days. At the end of experiment rats were killed within 24 hours. The increased bilirubin level, enhanced alanine aminotransferase and aspartate aminotransferase activity in plasma induced by $CCL_4$ were partly normalized by pectin administration in a dose-dependent manner. The pectin treatment also resulted in significant recovery of $CCL_4-induced$ decrease of the liver glycogen content. In addition, pectin significantly improved $CCL_4-induced$ alterations of pro-oxidant and antioxidant biochemical parameters in liver and plasma compared to those of rats administered $CCL_4$. In the second experiment the animals were given daily 10, 50 or 250 mg/ kg b.w. of pectin for 21 days before a 7-day administration of $CCL_4$. Rats were killed 24 hours after the end of experiment. Pretreatment with pectin before $CCL_4$ administration resulted in significantly inhibited increase of the blood enzymatic activities of alanine and aspartate aminotransferases and bilirubin level in a dose-dependent manner. Also, preliminary administration of pectin prevented elevation of malondialdehyde and conjugated diene levels in liver and plasma as well as a reduction of glutathione content in liver of rats given $CCL_4$. These results suggest that low-esterified pectin exert healing and preventive effects on $CCL_4-induced$ hepatotoxicity in rats.

A Comprehensive Review of Tropical Milky White Mushroom (Calocybe indica P&C)

  • Subbiah, Krishnamoorthy Akkanna;Balan, Venkatesh
    • Mycobiology
    • /
    • 제43권3호
    • /
    • pp.184-194
    • /
    • 2015
  • A compressive description of tropical milky white mushroom (Calocybe indica P&C var. APK2) is provided in this review. This mushroom variety was first identified in the eastern Indian state of West Bengal and can be cultivated on a wide variety of substrates, at a high temperature range ($30{\sim}38^{\circ}C$). However, no commercial cultivation was made until 1998. Krishnamoorthy 1997 rediscovered the fungus from Tamil Nadu, India and standardized the commercial production techniques for the first time in the world. This edible mushroom has a long shelf life (5~7 days) compared to other commercially available counterparts. A comprehensive and critical review on physiological and nutritional requirements viz., pH, temperature, carbon to nitrogen ratio, best carbon source, best nitrogen source, growth period, growth promoters for mycelia biomass production; substrate preparation; spawn inoculation; different supplementation and casing requirements to increase the yield of mushrooms has been outlined. Innovative and inexpensive methods developed to commercially cultivate milky white mushrooms on different lignocellulosic biomass is also described in this review. The composition profiles of milky white mushroom, its mineral contents and non-enzymatic antioxidants are provided in comparison with button mushroom (Agaricus bisporus) and oyster mushroom (Pleurotus ostreatus). Antioxidant assay results using methanol extract of milky white mushroom has been provided along with the information about the compounds that are responsible for flavor profile both in fresh and dry mushrooms. Milky white mushroom extracts are known to have anti-hyperglycemic effect and anti-lipid peroxidation effect. The advantage of growing at elevated temperature creates newer avenues to explore milky white mushroom cultivation economically around the world, especially, in humid tropical and sub-tropical zones. Because of its incomparable productivity and shelf life to any other cultivated mushrooms in the world, milky white mushroom could play an important role in satisfying the growing market demands for edible mushrooms in the near future.

Probiotic Characteristics of Lactobacillus brevis KT38-3 Isolated from an Artisanal Tulum Cheese

  • Hacioglu, Seda;Kunduhoglu, Buket
    • 한국축산식품학회지
    • /
    • 제41권6호
    • /
    • pp.967-982
    • /
    • 2021
  • Probiotics are living microorganisms that, when administered in adequate amounts, provide a health benefit to the host and are considered safe. Most probiotic strains that are beneficial to human health are included in the "Lactic acid bacteria" (LAB) group. The positive effects of probiotic bacteria on the host's health are species-specific and even strain-specific. Therefore, evaluating the probiotic potential of both wild and novel strains is essential. In this study, the probiotic characteristics of Lactobacillus brevis KT38-3 were determined. The strain identification was achieved by 16S rRNA sequencing. API-ZYM test kits were used to determine the enzymatic capacity of the strain. L. brevis KT38-3 was able to survive in conditions with a broad pH range (pH 2-7), range of bile salts (0.3%-1%) and conditions that simulated gastric juice and intestinal juice. The percentage of autoaggregation (59.4%), coaggregation with E. coli O157:H7 (37.4%) and hydrophobicity were determined to be 51.1%, 47.4%, and 52.7%, respectively. L. brevis KT38-3 produced β-galactosidase enzymes and was able ferment lactose. In addition, this strain was capable of producing antimicrobial peptides against the bacteria tested, including methicillin and/or vancomycin-resistant bacteria. The cell-free supernatants of the strain had high antioxidant activities (DPPH: 54.9% and ABTS: 48.7%). Therefore, considering these many essential in vitro probiotic properties, L. brevis KT38-3 has the potential to be used as a probiotic supplement. Supporting these findings with in vivo experiments to evaluate the potential health benefits will be the subject of our future work.

Mangiferin ameliorates cardiac fibrosis in D-galactose-induced aging rats by inhibiting TGF-β/p38/MK2 signaling pathway

  • Cheng, Jing;Ren, Chaoyang;Cheng, Renli;Li, Yunning;Liu, Ping;Wang, Wei;Liu, Li
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권2호
    • /
    • pp.131-137
    • /
    • 2021
  • Aging is the process spontaneously occurred in living organisms. Cardiac fibrosis is a pathophysiological process of cardiac aging. Mangiferin is a well-known C-glucoside xanthone in mango leaves with lots of beneficial properties. In this study, rat model of cardiac fibrosis was induced by injected with 150 mg/kg/d D-galactose for 8 weeks. The age-related cardiac decline was estimated by detecting the relative weight of heart, the serum levels of cardiac injury indicators and the expression of hypertrophic biomakers. Cardiac oxidative stress and local inflammation were measured by detecting the levels of malondialdehyde, enzymatic antioxidant status and proinflammatory cytokines. Cardiac fibrosis was evaluated by observing collagen deposition via masson and sirius red staining, as well as by examining the expression of extracellular matrix proteins via Western blot analysis. The cardiac activity of profibrotic TGF-β1/p38/MK2 signaling pathway was assessed by measuring the expression of TGF-β1 and the phosphorylation levels of p38 and MK2. It was observed that mangiferin ameliorated D-galactose-induced cardiac aging, attenuated cardiac oxidative stress, inflammation and fibrosis, as well as inhibited the activation of TGF-β1/p38/MK2 signaling pathway. These results showed that mangiferin could ameliorate cardiac fibrosis in D-galactose-induced aging rats possibly via inhibiting TGF-β/p38/MK2 signaling pathway.

Effect of Occupational Exposure to Herbicides on Oxidative Stress in Sprayers

  • Intayoung, Unchisa;Wunnapuk, Klintean;Kohsuwan, Kanyapak;Sapbamrer, Ratana;Khacha-ananda, Supakit
    • Safety and Health at Work
    • /
    • 제12권1호
    • /
    • pp.127-132
    • /
    • 2021
  • Background: Herbicides such as glyphosate, paraquat, and 2,4-dichlorophenoxyacetic acid have been reported to cause adverse side effects through production of reactive oxygen species. However, there were no data representing the adverse effects of a mixture herbicide usage in farmers, especially the changes in oxidative marker and antioxidant defense. This study aimed to determine the urinary malondialdehyde (MDA) and glutathione (GSH) level in farmers using mixed herbicides. Methods: Ninety-three farmers were recruited, and two spot urine samples (before and after work) were collected. The urinary MDA level was evaluated by thiobarbituric acid reactive substance assay, and the urinary GSH level was determined using the enzymatic recycling method. Results: Sixty-two percent of the participants were men, and 59% of the participants worked in a farm for 20-40 years. The common combinations of herbicide usage were glyphosate with 2,4-dichlorophenoxyacetic acid (36.5%). There was no significant difference between pre- and post-work urinary MDA and GSH levels among the 3 groups of herbicides. However, the urinary MDA levels in farmers using the combination of glyphosate and paraquat were significantly higher than those found in farmers using glyphosate alone. The associated factors with changes in MDA levels found that the exposure intensity index (B = 0.154), the cumulative exposure intensity index (B = 0.023), and wearing gloves while working (B = -2.347) were found to be significantly associated with MDA level. Conclusion: The results suggest that the combined use of glyphosate and paraquat caused a significant increase in urinary MDA levels. Moreover, intensity of exposure to herbicide and wearing gloves were associated with the level of MDA.

Heat stress on microbiota composition, barrier integrity, and nutrient transport in gut, production performance, and its amelioration in farm animals

  • Patra, Amlan Kumar;Kar, Indrajit
    • Journal of Animal Science and Technology
    • /
    • 제63권2호
    • /
    • pp.211-247
    • /
    • 2021
  • Livestock species experience several stresses, particularly weaning, transportation, overproduction, crowding, temperature, and diseases in their life. Heat stress (HS) is one of the most stressors, which is encountered in livestock production systems throughout the world, especially in the tropical regions and is likely to be intensified due to global rise in environmental temperature. The gut has emerged as one of the major target organs affected by HS. The alpha- and beta-diversity of gut microbiota composition are altered due to heat exposure to animals with greater colonization of pathogenic microbiota groups. HS also induces several changes in the gut including damages of microstructures of the mucosal epithelia, increased oxidative insults, reduced immunity, and increased permeability of the gut to toxins and pathogens. Vulnerability of the intestinal barrier integrity leads to invasion of pathogenic microbes and translocation of antigens to the blood circulations, which ultimately may cause systematic inflammations and immune responses. Moreover, digestion of nutrients in the guts may be impaired due to reduced enzymatic activity in the digesta, reduced surface areas for absorption and injury to the mucosal structure and altered expressions of the nutrient transport proteins and genes. The systematic hormonal changes due to HS along with alterations in immune and inflammatory responses often cause reduced feed intake and production performance in livestock and poultry. The altered microbiome likely orchestrates to the hosts for various relevant biological phenomena occurring in the body, but the exact mechanisms how functional communications occur between the microbiota and HS responses are yet to be elucidated. This review aims to discuss the effects of HS on microbiota composition, mucosal structure, oxidant-antioxidant balance mechanism, immunity, and barrier integrity in the gut, and production performance of farm animals along with the dietary ameliorations of HS. Also, this review attempts to explain the mechanisms how these biological responses are affected by HS.

Effects of Cochlodinium polykrikoides on Oxidative Status and Immune Parameters in the Marine Medaka Oryzias javanicus

  • Seong Duk, Do;Yun Kyung, Shin;Jae-Sung, Rhee
    • 한국해양생명과학회지
    • /
    • 제7권2호
    • /
    • pp.94-101
    • /
    • 2022
  • In this study, the marine medaka Oryzias javanicus was exposed to two concentrations of non-toxin-producing red tide dinoflagellate C. polykrikoides (1,000 and 2,000 cells ml-1) for 96 h, and the time-course biochemical responses of antioxidant and immunity parameters were analyzed in the liver tissue. Significant ichthyotoxicity with increasing cell concentrations of C. polykrikoides and exposure period was observed for 96 h. Opercular respiratory rate was lowered in marine medaka exposed to 2,000 cells ml-1 of C. polykrikoides. Intracellular malondialdehyde (MDA) content significantly elevated in response to both cell concentrations. In the case of glutathione (GSH) content, the levels were significantly elevated by 1,000 cells ml-1 of C. polykrikoides, but the contents significantly depleted upon exposure to 2,000 cells ml-1 of C. polykrikoides. Similarly, enzymatic activities of catalase (CAT) and superoxide dismutase (SOD) were increased by 1,000 cells ml-1 of C. polykrikoides, whereas their activities were lowered by 2,000 cells ml-1 of C. polykrikoides. Analysis of the two immunity parameters, alternative complement pathway and lysozyme, showed significantly lowered activities in 2,000 cells ml-1 of C. polykrikoides-exposed liver tissue. These biochemical effects of C. polykrikoides on marine medaka would be helpful for understanding its acute effects in marine fish.

Nitric oxide-Releasing Chitosan Nanoparticles; A Potential Impeding Strategy Against Salinity Stress in Arabidopsis thaliana

  • Waqas Rahim;Anjali Pande;Nusrat Jahan Methela;Da-Sol Lee;Bong-Gyu Mun;Hak-Yoon Kim;Byung-Wook Yun
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.157-157
    • /
    • 2022
  • Plants being sessile are prone to various abiotic challenges, including salinity. Plants generally cope with salt stress by regulating their endogenous NO levels. NO exogenously applied in various forms also successfully impedes the salt stress, but its small size, short half life, and high volatility rate hamper its application in agriculture. NO application via CS as a nanocarrier is an alternate option to ensure the optimal kinetic release of NO for a long period compared to the free NO form. Herein, we synthesized and characterized GSNO-CS NP by ionic gelation of TPP with CS and then reacting with GSH, followed by reaction with NaNO2 suspension. The synthesized NPs were characterized using non-destructive analytical techniques such as DLS, FTIR, and SEM to ensure their synthesis and surface morphology. NO-release profile confirmed optimal kinetic NO release for 24 h from NO-CS NP as compared to free NO form. The efficiency of NO-CS NP was checked on Arabidopsis plants under salinity stress by gauging the morphological, physiological, and enzymatic antioxidant system and SOS pathway gene expression levels. Overall, the results revealed that NO-CS NP successfully mitigates salinity stress compared to free GSNO. Concluding, the findings provide sufficient experimental evidence for the application of nanotechnology to enhance NO delivery, thus inducing more benefits for the plants under stress conditions by mitigating the deleterious impacts of salt stress on the morphological and physiological status of the plants, and regulating the ions exchange by overexpression of SOS pathway candidate genes.

  • PDF