Browse > Article
http://dx.doi.org/10.23005/ksmls.2022.7.2.94

Effects of Cochlodinium polykrikoides on Oxidative Status and Immune Parameters in the Marine Medaka Oryzias javanicus  

Seong Duk, Do (Department of Marine Science, College of Natural Sciences, Incheon National University)
Yun Kyung, Shin (Aquaculture Industry Research Division, South Sea Fisheries Research Institute, National Institute of Fisheries Science)
Jae-Sung, Rhee (Department of Marine Science, College of Natural Sciences, Incheon National University)
Publication Information
Journal of Marine Life Science / v.7, no.2, 2022 , pp. 94-101 More about this Journal
Abstract
In this study, the marine medaka Oryzias javanicus was exposed to two concentrations of non-toxin-producing red tide dinoflagellate C. polykrikoides (1,000 and 2,000 cells ml-1) for 96 h, and the time-course biochemical responses of antioxidant and immunity parameters were analyzed in the liver tissue. Significant ichthyotoxicity with increasing cell concentrations of C. polykrikoides and exposure period was observed for 96 h. Opercular respiratory rate was lowered in marine medaka exposed to 2,000 cells ml-1 of C. polykrikoides. Intracellular malondialdehyde (MDA) content significantly elevated in response to both cell concentrations. In the case of glutathione (GSH) content, the levels were significantly elevated by 1,000 cells ml-1 of C. polykrikoides, but the contents significantly depleted upon exposure to 2,000 cells ml-1 of C. polykrikoides. Similarly, enzymatic activities of catalase (CAT) and superoxide dismutase (SOD) were increased by 1,000 cells ml-1 of C. polykrikoides, whereas their activities were lowered by 2,000 cells ml-1 of C. polykrikoides. Analysis of the two immunity parameters, alternative complement pathway and lysozyme, showed significantly lowered activities in 2,000 cells ml-1 of C. polykrikoides-exposed liver tissue. These biochemical effects of C. polykrikoides on marine medaka would be helpful for understanding its acute effects in marine fish.
Keywords
Cochlodinium polykrikoides; Red tide; Marine medaka; Oxidative stress; Immunity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Garate-Lizarraga I, Lopez-Cortes DJ, Bustillo-Guzman JJ, Hemandez-Sandoval F. 2004. Blooms of Cochlodinium polykrikoides (Gymnodiniaceae) in the Gulf of California, Mexico. Rev Biol Trop 52: 51-58.
2 Gobler CJ, Berry DL, Anderson OR, Burson A, Koch F, Rodgers BS, Moore LK, Goleski JA, Allam B, Bowser P, Tang Y, Nuzzi R. 2008. Characterization, dynamics, and ecological impacts of harmful Cochlodinium polykrikoides blooms on eastern Long Island, NY, USA. Harmful Algae 7: 293-307.   DOI
3 Hallegraeff GM. 2003. Harmful algal blooms: a global overview, in Hallegraeff GM, Anderson DM, Cembella AD. (Eds.), Manual on harmful marine microalgae. UNESCO, Paris, France, pp 25-49.
4 Haque MN, Nam S-E, Shin YK, Rhee J-S. 2021. The dinoflagellate Alexandrium affine acutely induces significant modulations on innate immunity, hepatic function, and antioxidant defense system in the gill and liver tissues of red seabream. Aquat Toxicol 240: 105985.
5 Kim CS, Lee SG, Kim HG, Jung J. 1999. Reactive oxygen species as causative agents in the ichthyotoxicity of the red tide dinoflagellate Cochlodinium polykrikoides. J Plankton Res 21: 2105-2115.   DOI
6 Kim D, Oda T, Muramatsu T, Kim D, Matsuyama Y, Honjo T. 2002. Possible factors responsible for the toxicity of Cochlodinium polykrikoides, a red tide phytoplankton. Comp Biochem Physiol C 132: 415-423.   DOI
7 Kim D-I, Matsuyama Y, Nagasoe S, Yamaguchi M, Yoon Y-H, Oshima Y, Imada N, Honjo T. 2004. Effects of temperature, salinity and irradiance on the growth of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef (Dinophyceae). J Plankton Res 26: 61-66.   DOI
8 Kudela RM, Ryan JP, Blakely MD, Lane JQ, Peterson TD. 2008. Linking the physiology and ecology of Cochlodinium to better understand harmful algal bloom events: a comparative approach. Harmful Algae 7: 278-292.   DOI
9 Kudela R, Gobler C. 2012. Harmful dinoflagellate blooms caused by Cochlodinium sp.: global expansion and ecological strategies facilitating bloom formation. Harmful Algae 14: 71-86.   DOI
10 Landsberg JH. 2002. The effects of harmful algal blooms on aquatic organisms. Rev Fish Sci 10: 113-390.   DOI
11 Lesser MP. 2006. Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68: 253-278.   DOI
12 Liu W, Au DW, Anderson DM, Lam PK, Wu RS. 2007. Effects of nutrients, salinity, pH and light:dark cycle on the production of reactive oxygen species in the alga Chattonella marina. J Exp Mar Biol Ecol 346: 76-86.   DOI
13 Lushchak VI, Bagnyukova TV. 2006. Effects of different environmental oxygen levels on free radical processes in fish. Comp Biochem Physiol B 144: 283-289.   DOI
14 Mindy LR, Steve LM, Ebrahim AJ, Anbiah R, Donald MA. 2010. The catastrophic 2008-2009 red tide in the Arabian Gulfregion, with observations on the identification and phylogeny of the fish killing dinoflagellate Cochlodinium polykrikoides. Harmful Algae 9: 163-172.   DOI
15 Lushchak VI. 2011. Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101: 13-30.   DOI
16 Magnadottir B. 2006. Innate immunity of fish (overview). Fish Shellfish Immunol 20: 137-151.   DOI
17 Marshall J-A, Hovenden M, Oda T, Hallegraeff GM. 2002. Photosynthesis does influence superoxide production in the ichthyotoxic alga Chattonella marina (Raphidophyceae). J Plankton Res 24: 1231-1236.   DOI
18 Mulholland MR, Morse RE, Boneillo GE, Bernhardt PW, Filippino KC, Procise LA, Blanco-Garcia JL, Marshall HG, Egerton TA, Hunley WS, Moore KA, Berry DL, Gobler CJ. 2009. Understanding causes and impacts of the dinoflagellate, Cochlodinium polykrikoides, blooms in the Chesapeake Bay. Estuar Coast 32: 734-747.
19 Nam S-E, Saravanan M, Rhee J-S. 2020. Benzo[a]pyrene constrains embryo development via oxidative stress induction and modulates the transcriptional responses of molecular biomarkers in the marine medaka Oryzias javanicus. J Environ Sci Health A 55: 1050-1058.
20 Saurabh S, Sahoo PK. 2008. Lysozyme: an important defence molecule of fish innate immune system. Aquac Res 39: 223-239.   DOI
21 Shin Y-K, Nam S-E, Kim WJ, Seo DY, Kim Y-J, Rhee J-S. 2019. Red tide dinoflagellate Cochlodinium polykrikoides induces significant oxidative stress and DNA damage in the gill tissue of the red seabream Pagrus major. Harmful Algae 86: 37-45.   DOI
22 Shumway SE. 1990. A review of the effects of HABs on shellfish and aquaculture. J World Aquacult Soc 21: 65-104.   DOI
23 Whyte JNC, Haigh N, Ginther NG, Keddy LJ. 2001. First record of blooms of Cochlodinium sp. (Gymnodiniales, Dinophyceae) causing mortality to aquacultured salmon on the west coast of Canada. Phycologia 40: 298-304.    DOI
24 Tang YZ, Gobler CJ. 2009. Characterization of the toxicity of Cochlodinium polykrikoides isolates from Northeast US estuaries to finfish and shellfish. Harmful Algae 8: 454-462.   DOI
25 Tomas CR, Smayda TJ. 2008. Red tide blooms of Cochlodinium polykrikoides in a coastal cove. Harmful Algae 7: 308-317.   DOI
26 Townsend DM, Tew KD, Tapiero H. 2003. The importance of glutathione in human disease. Biomed Pharmacother 57: 145-155.   DOI
27 Anton A, Teoh PL, Mohd-Shaleh SR, Mohammad-Noor N. 2008. First occurrence of Cochlodinium blooms in Sabah, Malaysia. Harmful Algae 7: 331-336.   DOI
28 Band-Schmidt CJ, Lechuga-Deveze CH, Kulis DM, Anderson DM. 2003. Culture studies of Alexandrium affine (Dinophyceae), a non-toxic cyst forming dinoflagellate from Bahia concepcion, Gulf of California. Bot Mar 46: 44-54.   DOI
29 Boshra H, Li J, Sunyer JO. 2006. Recent advances on the complement system of teleost fish. Fish Shellfish Immunol 20: 239-262.   DOI
30 Cembella AD, Quilliam MA, Lewis NI, Bauder AG, Dell'Aversano C, Thomas K, Jellett J, Cusack RR. 2002. The toxigenic marine dinoflagellate Alexandrium tamarense as the probable cause of mortality of caged salmon in Nova Scotia. Harmful Algae 1: 313-325.   DOI
31 Chen CY, Chou HN. 2001. Ichthyotoxicity studies of milkfish Chanos chanos fingerlings exposed to a harmful dinoflagellate Alexandrium minutum. J Exp Mar Biol Ecol 262: 211-219.   DOI
32 Curtiss CC, Langlois GW, Busse LB, Mazzillo F, Silver MW. 2008. The emergence of Cochlodinium along the California Coast (USA). Harmful Algae 7: 337-346.   DOI
33 Ellis AE. 1990. Lysozyme assays. In: Stolen JS, Fletcher TC, Anderson DP, Roberson BS, Van Muiswinkel WB. (Eds.), Techniques in Fish Immunology. SOS Publications, Fair Haven NJ, pp 101-103.
34 Dorantes-Aranda JJ, Seger A, Mardones JI, Nichols PD, Hallegraeff GM. 2015. Progress in understanding algal bloom-mediated fish kills: The role of superoxide radicals, phycotoxins and fatty acids. PLoS One 10: e0133549.