• 제목/요약/키워드: enzymatic and non-enzymatic

검색결과 279건 처리시간 0.026초

Transcriptome Analysis and Expression Profiling of Molecular Responses to Cd Toxicity in Morchella spongiola

  • Xu, Hongyan;Xie, Zhanling;Jiang, Hongchen;Guo, Jing;Meng, Qing;Zhao, Yuan;Wang, Xiaofang
    • Mycobiology
    • /
    • 제49권4호
    • /
    • pp.421-433
    • /
    • 2021
  • Morchella is a genus of fungi with the ability to concentrate Cd both in the fruit-body and mycelium. However, the molecular mechanisms conferring resistance to Cd stress in Morchella are unknown. Here, RNA-based transcriptomic sequencing was used to identify the genes and pathways involved in Cd tolerance in Morchella spongiola. 7444 differentially expressed genes (DEGs) were identified by cultivating M. spongiola in media containing 0.15, 0.90, or 1.50 mg/L Cd2+. The DEGs were divided into six sub-clusters based on their global expression profiles. GO enrichment analysis indicated that numerous DEGs were associated with catalytic activity, cell cycle control, and the ribosome. KEGG enrichment analysis showed that the main pathways under Cd stress were MAPK signaling, oxidative phosphorylation, pyruvate metabolism, and propanoate metabolism. In addition, several DEGs encoding ion transporters, enzymatic/non-enzymatic antioxidants, and transcription factors were identified. Based on these results, a preliminary gene regulatory network was firstly proposed to illustrate the molecular mechanisms of Cd detoxification in M. spongiola. These results provide valuable insights into the Cd tolerance mechanism of M. spongiola and constitute a robust foundation for further studies on detoxification mechanisms in macrofungi that could potentially lead to the development of new and improved fungal bioremediation strategies.

Effect of Aerva lanata against oxalate mediated free radical toxicity in urolithiasis

  • Begum, Vava Mohaideen Hazeena;Mahesh, Ramalingam;Ramesh, Thiyagarajan;Soundararajan, Periasamy
    • Advances in Traditional Medicine
    • /
    • 제8권1호
    • /
    • pp.59-66
    • /
    • 2008
  • This study was undertaken to evaluate the antioxidant potential of A. lanata on oxalate mediated free radical toxicity in ethylene glycol induced calcium oxalate urolithic rats. Calcium oxalate (CaOX) stone was induced by 0.75% ethylene glycol in drinking water for 28 days. From $29^{th}$ day onwards, the CaOX urolithic rats were treated with A. lanata aqueous suspension (2,000 mg/kg body weight/dose/day) orally for another 28 days. At the end of experimental periods the animals were sacrificed, samples were collected and analyzed the lipid peroxidation product, protein oxidation product, enzymatic and non-enzymatic antioxidants in normal and experimental groups. Lipid peroxidation and protein oxidation products were significantly elevated while enzymatic and non-enzymatic antioxidant levels were significantly decreased in ethylene glycol induced CaOX urolithic rats when compared with control rats. The above alterations were reverted to near control in rats treated with aqueous suspension of A. lanata. This study suggests that A. lanata could prevent the free radical formation from calcium oxalate urolithiasis in rats and protecting the renal cells from oxidative injury.

Cosmetic Potential of Enzymatic Treated Ginseng Leaf

  • Lee, Hyun-Sun;Lee, Hyun-Jung;Cho, Hye-Jin;Park, Sung-Sun;Kim, Jin-Man;Suh, Hyung-Joo
    • Journal of Ginseng Research
    • /
    • 제34권3호
    • /
    • pp.227-236
    • /
    • 2010
  • The objective of this study was to evaluate the potential use of ginseng leaf as a cosmetic material. In this research, we employed enzymatic treated ginseng leaf by using Ultraflo L to improve the recovery of ginsenosides from the ginseng leaf and studied the biological activities and skin safety of the enzymatic treated ginseng leaf for use as a cosmetic material. The total ginsenoside contents of the non-enzymatic treated ginseng leaf (NEGL) and Ultraflo L treated ginseng leaf (UTGL) were 271 and 406 mg/g, respectively. The level of metabolite ginsenosides (sum of Rg2, Rg3, Rg5, Rk1, compound K, Rh1, Rh2, and F2) was higher in UTGL (93.1 mg) compared to NEGL (62.4 mg) in one gram ginseng leaf extract. The increase in amounts of ginsenoside types in UTGL compared to NEGL was generally 140% to 157%. UTGL exhibited relatively higher 2,2-diphenyl-2-picrylhydrazyl hydrate ($IC_{50}$, 2.8 mg/mL) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt ($IC_{50}$, 1.6 mg/mL) radical scavenging activities compared to NEGL (4.8 mg/mL and 2.2 mg/mL). The UTGL group showed normalized hydrogen peroxide, lipid peroxidation and visual wrinkling grade induced-UVB exposure. The UTGL did not induce any adverse reactions such as erythema and edema on intact skin sites; however, some guinea pigs treated with UTGL on abraded skin sites showed very slight erythema. The primary irritation index (PII) score of UTGL was 0.05 and it was classified as a practically non-irritating material (PII, 0 to 0.5). In skin sensitization tests with guinea pigs, UTGL had a positive rate of skin sensitization at 40%, and the mean evaluation score was 0.4.

Effects of High Level of Sucrose on the Moisture Content, Water Activity, Protein Denaturation and Sensory Properties in Chinese-Style Pork Jerky

  • Chen, W.S.;Liu, D.C.;Chen, M.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권4호
    • /
    • pp.585-590
    • /
    • 2002
  • The effects of a high level of sucrose on the moisture content, water activity, protein denaturation and sensory properties in Chinese-style pork jerky were investigated. The pork jerky with different levels (0, 12, 15, 18 and 21%) of sucrose was prepared. Fifteen frozen boneless pork legs from different animals were used in this trial. Sucrose is a non-reducing disaccharides and would not undergo non-enzymatic browning. Some studies pointed out that sucrose might be hydrolyzed during freezing, dehydration and storage into glucose and fructose, and cause non-enzymatic browning in meat products. The results showed that moisture content and water activity of pork jerky decreased with increase of the level of sucrose. At the same time, shear value was increased due to the reduced moisture content and water activity by osmotic dehydration. However, a higher level of sucrose had a significantly negative effect on protein solubility and extractability of myosin heavy chain of pork jerky due to non-enzymatic browning. From the results of sensory panel tests, the pork jerky with 21% of sucrose seems to be more acceptable by the panelists in hardness, sweetness and overall acceptability.

세치제에 함유된 비효소계 항산화제의 경시변화에 따른 잔류량 (Residue by elapsed time of non-enzymatic antioxidants in dentifrice)

  • 박정은;박용덕;홍태기;장종화
    • 한국치위생학회지
    • /
    • 제16권5호
    • /
    • pp.783-790
    • /
    • 2016
  • Objectives: The purpose of this study is to evaluate the non-enzymatic antioxidants stabilities in dentifrices by ascorbic acid and tocopherol according to the chemical condition. Methods: For the analysis of two antioxidants, HPLC UV detector system was used. HPLC was performed using sodium sulfate, acetonitrile(ACN), methanol(MeOH) and measuring absorbance at 240-295 nm. To confirm general pH reaction of two compounds, buffer solution was prepared for the analysis. The dentifrice was titrated by pH so as to examine the change of elapsed time in dentifrice. Linearity of calibration curve of two antioxidants was measured. Results: Each compound showed good linearity at optimized wavelength as well as showing good precision. General pH reaction of two antioxidants was examined. Ascorbic acid showed the highest residue(63.23%) at pH 10 and the lowest residue(2.77%) at pH 4. Tocopherol showed the highest residue(55.70%) at pH 7 and the lowest residue(3.31%) at pH 4. As a result of changing elapsed time of antioxidants in dentifrice by pH, components were remained stably at low temperature($39.2^{\circ}F$) and pH 7. Conclusions: It is necessary to keep dentifrice including ascorbic acid and tocopherol, and non-enzymatic antioxidants at pH 7 and low temperature for improving chemical stability.

재래종 적색자두(Prunus salicina) 효소갈변반응 생성물의 돌연변이 억제작용 (Desmutagenicity of Enzymatically Browned Substances Obtained from the Reaction of Prunus salicina (Red) Enzyme and Polyphenols)

  • 함승시;홍은희;대촌호구
    • 한국식품과학회지
    • /
    • 제19권3호
    • /
    • pp.212-219
    • /
    • 1987
  • 재래종 적색 자두 (Prunus salicina)에서 효소를 추출하여 4종류의 polyphenol화합물과 반응시켜 얻어진 갈변반응 생성물에 대하여 Bacillus subtilis H17과 M45를 이용한 rec-assay와 Salmonella typhimurium TA98과 TA100 두 균주를 이용한 Ames test, 그리고 calfcthymus DNA를 이용하는 DNA절단시험을 이용하여 돌연변이원성과 돌연변이 억제작용을 조사하였다. 포자 rec-assay 에서는 pyrogallol, hydroxyhydroquinone, 3,4-dihydroxytoluene, chlorogenic acid 의 갈변반응 생성물은 모두 DNA손상능력이 없었으며 8가지 금속이온 중 ${Zn}^{2+}$${Ni}^{2+}$의 첨가로 고초균 DNA손상에 약한 영향을 나타내었다. DNA절단시험 결과 4종류 갈변반응 생성물 모두 DNA절단작용이 없었으며 금속이온의 영향에 있어서는 pyrogallol 갈변반응 생성물이 ${Cu}^{2+}$의 영향을 받아 ${Cu}^{2+}$의 농도가 증가함에 따라 강한 절단작용을 나타내었으며 3,4-dihydroxytoluene 과 hydroxyhydroquinone갈변반응 생성물은 금속이온의 영향을 전혀 받지 않았다. 또한 chlorogenic acid갈변반응 생성물은 DNA 절단을 억제하는 효과를 나타내었다. Ames test에서는 4가지 갈변반응 생성물 모두 변이원성은 없었으며 benzo$[{\alpha}]$pyrene을 사용한 변이원성 억제작용 실험결과 benzo$[{\alpha}]$pyrene의 활성을 강하게 억제하는 것으로 나타났다.

  • PDF

마른 오징어 저장중의 수분활성과 갈변반응 (NON-ENZYMATIC BROWNING REACTIONS IN DRIED SQUID STORED AT DIFFERENT WATER ACTIVITIES)

  • 최호연;김무남;이강호
    • 한국수산과학회지
    • /
    • 제6권3_4호
    • /
    • pp.97-100
    • /
    • 1973
  • In the previous work(Kim et al, 1973), the quality of sun-dried Alaska pollack, Theragra chalch-ogramma, was discussed in the aspect of non-enzymatic discoloration as a function of relative humidity during storage at room temperature($20^{\circ}C$). In this paper, sun-dried squid, Ommastrephes steam pacificus was investigated at the same aspect mentioned above. Fresh squid from the whole sale market was dressed, filleted, dried for 48 hours in the open air and finally stored in the humidistat chamber. Lipid oxidation ana development of non-enzymatic browning were tested by the same methods described in the previous paper. The TBA value showed a maximum peak on 30 day storage, hereafter tended to decrease gradually. The rate of browning, however, in water soluble fraction as well as in chloroform-methanol fraction was lower at 0.34 to 0.45 water activity than at any other case, and propagation of lipid oxidation was also diminished at the above level of water activity. From the results, it is recognized that storage at Aw=0.34 to 0.45 provides higher quality stability for sun-dried squid.

  • PDF

초임계 이산화탄소에서 밀배아유의 효소적 에탄올화 반응 특성 (Characteristics of Wheat Germ Oil during Enzymatic Ethanolysis in Supercritical Carbon Dioxide)

  • 백성신;권경태;정고운;안향민;심정은;강희문;전병수
    • Korean Chemical Engineering Research
    • /
    • 제47권5호
    • /
    • pp.546-552
    • /
    • 2009
  • 이번 연구에서는 밀배아유의 기능성 향상을 위해 고정화 효소를 이용한 밀배아유의 효소적 에탄올 반응을 수행했고, 효소적 에탄올 반응의 비가압조건과 가압조건을 중점적으로 비교 분석했다. 비가압조건 효소적 에탄올 반응 수행은 밀배아유와 99.9% 에탄올 혼합물에 두 가지 고정화 효소인 Lipozyme TL-IM과 Lipozyme RM-IM를 1~5 w%(밀배아 기준 무게비)로 25 ml 플라스크에 shaking machine 상에서 $40{\sim}70^{\circ}C$, 120 rpm 조건으로 실험을 수행했다. 가압조건상에서의 효소적 에탄올 반응 조건은 고정화 효소 2 w%, 반응 시간 24시간, 반응 온도 $40{\sim}60^{\circ}C$ 및 반응 압력 75, 100, 150, 200 bar으로 수행했다. 실험으로부터 회수된 sample은 트리글리세라이드의 분해 정도를 살펴보기 위해 모노-, 디-, 트리글리세라이드를 HPLC를 이용하여 분석했다. 밀배아유의 전반적인 전환율은 반응온도와 고정화 효소의 농도에 따라 증가했고, 최적 반응 조건은 가압조건 $50^{\circ}C$, 100 bar이었다.

Enzymatic Hydrolysate from Non-pretreated Biomass of Yellow Poplar (Liriodendron tulipifera) is an Alternative Resource for Bioethanol Production

  • Jung, Ji-Young;Choi, Myung-Suk;Kim, Ji-Su;Jeong, Mi-Jin;Kim, Young-Wun;Woon, Byeng-Tae;Yeo, Jin-Ki;Shin, Han-Na;Goo, Young-Bon;Ryu, Keun-Ok;Karigar, Chandrakant S.;Yang, Jae-Kyung
    • 한국산림과학회지
    • /
    • 제99권5호
    • /
    • pp.744-749
    • /
    • 2010
  • Enzymatic hydrolysate from non pre-treated biomass of yellow poplar (Liriodendron tulipifera) was prepared and used as resource for bioethanol production. Fresh branch (1 year old) of yellow poplar biomass was found to be a good resource for achieving high saccharification yields and bioethanol production. Chemical composition of yellow poplar varied significantly depending upon age of tree. Cellulose content in fresh branch and log (12 years old) of yellow poplar was 44.7 and 46.7% respectively. Enzymatic hydrolysis of raw biomass was carried out with commercial enzymes. Fresh branch of yellow poplar hydrolyzed more easily than log of yellow poplar tree. After 72 h of enzyme treatment the glucose concentration from Fresh branch of yellow poplar was 1.46 g/L and for the same treatment period log of yellow poplar produced 1.23 g/L of glucose. Saccharomyces cerevisiae KCTC 7296 fermented the enzyme hydrolysate to ethanol, however ethanol production was similar (~1.4 g/L) from both fresh branch and log yellow poplar hydrolysates after 96 h.

Localization of Germin Genes and Their Products in Developing Wheat Coleoptiles

  • Caliskan, Mahmut;Ozcan, Birgul;Turan, Cemal;Cuming, Andrew C.
    • BMB Reports
    • /
    • 제37권3호
    • /
    • pp.339-342
    • /
    • 2004
  • Germination is a process which characterized with nescient synthesis of genes. Among the genes synthesized during the germination of wheat embryos, germin genes, proteins and their enzymatic activity were defined. Germin is a water soluble homopentameric glycoprotein which is remarkable resistant to degradation by a broad range of proteases including pepsin. Germin proteins found to have strong oxalate oxidase activity which produces hydrogen peroxide by degrading oxalic acid. The current study, aimed to localize the germin genes, proteins and enzymatic activities in developing coleoptiles which is a rapidly growing protective tissue of leaf primordium and shoot apex. Non-radioactively abeled germin riboprobes were employed to localize germin mRNAs in situ. FITC (Fluorescein isothiocyanate) and alkaline phosphatase linked anti-germin antibodies were used to localize germin proteins under the fluorescence and light microscopy and finally germin enzymatic activity was localized by using appropriate enzyme assay. The results revealed that in coleoptiles germin genes, proteins and their enzymatic activity were predominantly associated with the cells of epidermis and vascular bundle sheath cells.