• 제목/요약/키워드: enzymatic activities

검색결과 635건 처리시간 0.028초

고효율 효소를 분비하는 균주의 선발 및 신문고지의 효소탈묵 특성(제4보) -고지탈묵용 Fungal Cellulase와 Xylanase의 생산- (Screening of Microorganisms Secreted High Efficient Enzymes and Properties of Enzymatic Deinking for Old Newsprint(IV) -Culture conditions of fungal extracellular enzyme production for biological deinking system-)

  • 박성철;강진하;이양수
    • 펄프종이기술
    • /
    • 제37권1호
    • /
    • pp.38-46
    • /
    • 2005
  • This study was focused on the optimum culture condition in CMCase, FPase and xylanase activities of two fungal strains that secret extracellular enzymes for using enzymatic deinking agent to old newsprint. The results of this study were as follows. When Fusarium pallidoroseum was grown on the medium, containing of rice bran+xylan $2.0\%,\;peptone\;0.6\%,\;KH_2PO_4\;0.075\%\;and\;MnSO_4\;0.06\%\;with\;pH\;9.0,\;at\;29^{\circ}C$ for 6 days, the quantitative degree of extracellular enzyme production was the highest. Optimum culture condition for Aspergillus niger was pH 5.0, $27^{\circ}C$ incubating temperature and 7 days incubation period on liquid medium, containing of CMC+xylan $2.5\%,\;yeast\;extract\;0.4\%,\;K_3PO_4\;0.05\%\;and\;CaCl_2+FeSO_4\;0.08\%$. Aspergillus niger was fairly higher FPase and xylanase activities than Trichoderma reesei ATCC 28217.

Screening for Angiotensin 1-Converting Enzyme Inhibitory Activity of Ecklonia cava

  • Athukorala Yasantha;Jeon, You-Jin
    • Preventive Nutrition and Food Science
    • /
    • 제10권2호
    • /
    • pp.134-139
    • /
    • 2005
  • Seven brown algal species (Ecklonia cava, Ishige okamurae, Sargassum fulvellum, Sargassum horneri, Sargassum coreanum, Sargassum thunbergii and Scytosiphon lomentaria) were hydrolyzed using five proteases (Protamex, Kojizyme, Neutrase, Flavourzyme and Alcalase) and screened for angiotensin 1-converting enzyme (ACE) inhibitory activities. Most algal species examined showed good ACE inhibitory activities after the enzymatic hydrolysis. However, E. cava was the most potent ACE inhibitor of the seven species. Flavourzyme digest of E. cava exhibited an $IC_{50}$ of around $0.3\;{\mu}g/mL$ for ACE; captopril has an $IC_{50}$ of $\~0.05\;{\mu}g/mL$. The Flavourzyme digest was separated to three fractions by an ultrafiltration membrane (5, 10, 30 kDa MWCO) system according to the molecular weights. The active components were mainly concentrated in >30 kD fraction which are composed of the highest protein content $(27\%)$ and phenolic content (261 mg/100 mL) compared to the other two smaller molecular weight fractions. Therefore, the active compounds appear to be relatively high molecular weight complex molecules associated with protein (glycoprotein) and polyphenols. Therefore, E. cave is a potential source of antihypertensive compound.

Ginsenoside Rg3의 함량증가를 위한 변환 기술 (Transformation Techniques for the Large Scale Production of Ginsenoside Rg3)

  • 남기열;최재을;박종대
    • 한국약용작물학회지
    • /
    • 제21권5호
    • /
    • pp.401-414
    • /
    • 2013
  • Ginsenoside Rg3 (G-Rg3) contained only in red ginseng has been found to show various pharmacological effects such as an anticancer, antiangiogenetic, antimetastastic, liver protective, neuroprotective immunomodulating, vasorelaxative, antidiabetic, insulin secretion promoting and antioxidant activities. It is well known that G-Rg3 could be divided into 20(R)-Rg3 and 20(S)-Rg3 according to the hydroxyl group attached to C-20 of aglycone, whose structural characteristics show different pharmacological activities. It has been reported that G-Rg3 is metabolized to G-Rh2 and protopanaxadiol by the conditions of the gastric acid or intestinal bacteria, thereby these metabolites could be absorbed, suggesting its absolute bioavailability (2.63%) to be very low. Therefore, we reviewed the chemical, physical and biological transformation methods for the production on a large scale of G-Rg3 with various pharmacological effects. We also examined the influence of acid and heat treatment-induced potentials on for the preparation method of higher G-Rg3 content in ginseng and ginseng products. Futhermore, the microbial and enzymatic bio-conversion technologies could be more efficient in terms of high selectivity, efficiency and productivity. The present review discusses the available technologies for G-Rg3 production on a large scale using chemical and biological transformation.

Glycosylation of Semi-Synthetic Isoflavene Phenoxodiol with a Recombinant Glycosyltransferase from Micromonospora echinospora ATCC 27932

  • Seo, Minsuk;Seol, Yurin;Park, Je Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권5호
    • /
    • pp.657-662
    • /
    • 2022
  • Glycosyltransferase (GT)-specific degenerate PCR screening followed by in silico sequence analyses of the target clone was used to isolate a member of family1 GT-encoding genes from the established fosmid libraries of soil actinomycetes Micromonospora echinospora ATCC 27932. A recombinant MeUGT1 was heterologously expressed as a His-tagged protein in E. coli, and its enzymatic reaction with semi-synthetic phenoxodiol isoflavene (as a glycosyl acceptor) and uridine diphosphate-glucose (as a glycosyl donor) created two different glycol-attached products, thus revealing that MeUGT1 functions as an isoflavonoid glycosyltransferase with regional flexibility. Chromatographic separation of product glycosides followed by the instrumental analyses, clearly confirmed these previously unprecedented glycosides as phenoxodiol-4'-α-O-glucoside and phenoxodiol-7-α-O-glucoside, respectively. The antioxidant activities of the above glycosides are almost the same as that of parental phenoxodiol, whereas their anti-proliferative activities are all superior to that of cisplatin (the most common platinum chemotherapy drug) against two human carcinoma cells, ovarian SKOV-3 and prostate DU-145. In addition, they are more water-soluble than their parental aglycone, as well as remaining intractable to the simulated in vitro digestion test, hence demonstrating the pharmacological potential for the enhanced bio-accessibility of phenoxodiol glycosides. This is the first report on the microbial enzymatic biosynthesis of phenoxodiol glucosides.

이매패류 3종 소화맹낭의 소화효소 구성 및 활성도 (Digestive Enzymatic Compositions and Activities of the Digestive Diverticula in Three Species of Bivalves)

  • 주선미;권오남;이정식
    • 한국패류학회지
    • /
    • 제27권4호
    • /
    • pp.371-376
    • /
    • 2011
  • 본 연구는 3종의 이매패류를 대상으로 소화맹낭의 소화효소 구성 및 활성도에 대해 조사하였다. 본 연구에 사용된 이매패류는 지중해담치, 개조개 및 꼬막이며, 이들은 한국 남해안에서 2010년 11월에 채집하였다. 지중해담치, 개조개, 꼬막의 소화맹낭을 구성하는 소화효소는 amylase와 cellulase가 약 95%로 대부분을 차지하였다. 소화맹낭에서 amylase와 cellulase 활성도는 지중해담치는 2.6과 0.8 U/mg, 개조개는 2.4와 8.8 U/mg, 꼬막은 7.3과 11.8 U/mg였다. 그리고 소화맹낭의 소화효소 가운데 protease의 활성도는 지중해담치, 개조개, 꼬막에서 각각 0.00019, 0.00028, 0.00022 U/mg로 가장 낮았다.

Evaluation of Luminescent P450 Analysis for Directed Evolution of Human CYP4A11

  • Choi, Seunghye;Han, Songhee;Lee, Hwayoun;Chun, Young-Jin;Kim, Donghak
    • Biomolecules & Therapeutics
    • /
    • 제21권6호
    • /
    • pp.487-492
    • /
    • 2013
  • Cytochrome P450 4A11 (CYP4A11) is a fatty acid hydroxylase enzyme expressed in human liver. It catalyzes not only the hydroxylation of saturated and unsaturated fatty acids, but the conversion of arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE), a regulator of blood pressure. In this study, we performed a directed evolution analysis of CYP4A11 using the luminogenic assay system. A random mutant library of CYP4A11, in which mutations were made throughout the entire coding region, was screened with luciferase activity to detect the demethylation of luciferin-4A (2-[6-methoxyquinolin-2-yl]-4,5-dihydrothiazole-4-carboxylic acid) of CYP4A11 mutants in Escherichia coli. Consecutive rounds of random mutagenesis and screening yielded three improved CYP4A11 mutants, CP2600 (A24T/T263A), CP2601 (T263A), and CP2616 (A24T/T263A/V430E) with ~3-fold increase in whole cells and >10-fold increase in purified proteins on the luminescence assay. However, the steady state kinetic analysis for lauric acid hydroxylation showed the significant reductions in enzymatic activities in all three mutants. A mutant, CP2600, showed a 51% decrease in catalytic efficiency ($k_{cat}/K_m$) for lauric acid hydroxylation mainly due to an increase in $K_m$. CP2601 and CP2616 showed much greater reductions (>75%) in the catalytic efficiency due to both a decrease in $k_{cat}$ and an increase in Km. These decreased catalytic activities of CP2601 and CP2616 can be partially attributed to the changes in substrate affinities. These results suggest that the enzymatic activities of CYP4A11 mutants selected from directed evolution using a luminogenic P450 substrate may not demonstrate a direct correlation with the hydroxylation activities of lauric acid.

팔당호에 설치된 인공식물섬에서의 세균 수와 체외효소 활성도의 변화 (Bacterial Abundances and Enzymatic Activities under Artificial Vegetation Island in Lake Paldang)

  • 변명섭;유재준;김옥선;최승익;안태석
    • 생태와환경
    • /
    • 제35권4호통권100호
    • /
    • pp.266-272
    • /
    • 2002
  • 팔당호에 설치된 인공식물섬에서 미생물의 역할을 알아보기 위하여 동물플랑크톤 군집 크기, 총세균수, 활성세균수, ${\beta}$-glucosidase와 phosphatase의 체외효소활성도를 2001년 11월 3일부터 2002년 4월까지 격주로 인공식물섬이 설치된 지역과 바깥지역을 대상으로 조사 분석하였다 인공식물섬 아래에서는 일반적으로 측정하는 환경요인들은 대조구보다 수질이 나쁜 것으로 나타났다. 그러나, 동물 플랑크톤의 수는 대조구보다 굉균 25배, 활성세균의 수는 평균 3-8배, 그리고 체외효소활성도는 훨씬 높은 값을 보였다. 이러한 결과는 인공식물섬에서는 동물플랑크톤-식물플랑크톤-수초-세균의 밀접한 관계가 존재하고, 이 관계에 의하여 동물플랑크톤과 세균의 호흡, 분해작용으로 유기물이 제거되는 것으로 판단되었다.

Comprehensive Evaluation System for Post-Metabolic Activity of Potential Thyroid-Disrupting Chemicals

  • Yurim Jang;Ji Hyun Moon;Byung Kwan Jeon;Ho Jin Park;Hong Jin Lee;Do Yup Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권10호
    • /
    • pp.1351-1360
    • /
    • 2023
  • Endocrine-disrupting chemicals (EDCs) are compounds that disturb hormonal homeostasis by binding to receptors. EDCs are metabolized through hepatic enzymes, causing altered transcriptional activities of hormone receptors, and thus necessitating the exploration of the potential endocrine-disrupting activities of EDC-derived metabolites. Accordingly, we have developed an integrative workflow for evaluating the post-metabolic activity of potential hazardous compounds. The system facilitates the identification of metabolites that exert hormonal disruption through the integrative application of an MS/MS similarity network and predictive biotransformation based on known hepatic enzymatic reactions. As proof-of-concept, the transcriptional activities of 13 chemicals were evaluated by applying the in vitro metabolic module (S9 fraction). Identified among the tested chemicals were three thyroid hormone receptor (THR) agonistic compounds that showed increased transcriptional activities after phase I+II reactions (T3, 309.1 ± 17.3%; DITPA, 30.7 ± 1.8%; GC-1, 160.6 ± 8.6% to the corresponding parents). The metabolic profiles of these three compounds showed common biotransformation patterns, particularly in the phase II reactions (glucuronide conjugation, sulfation, GSH conjugation, and amino acid conjugation). Data-dependent exploration based on molecular network analysis of T3 profiles revealed that lipids and lipid-like molecules were the most enriched biotransformants. The subsequent subnetwork analysis proposed 14 additional features, including T4 in addition to 9 metabolized compounds that were annotated by prediction system based on possible hepatic enzymatic reaction. The other 10 THR agonistic negative compounds showed unique biotransformation patterns according to structural commonality, which corresponded to previous in vivo studies. Our evaluation system demonstrated highly predictive and accurate performance in determining the potential thyroid-disrupting activity of EDC-derived metabolites and for proposing novel biotransformants.

Effect of Enzymatic Hydrolysis on Polylactic Acid Fabrics by Lipases from Different Origins

  • Lee, So-Hee;Song, Wha-Soon
    • 한국의류학회지
    • /
    • 제36권6호
    • /
    • pp.653-662
    • /
    • 2012
  • This study measured the effect of general pre-treatment on PLA fabrics to confirm the benefits of enzymatic processing on PLA fabrics in the textile industry as well as evaluated the hydrolytic activities of three lipases. The effects of lipase hydrolysis were analyzed through moisture regain, dyeing ability, tensile strength, and surface morphology. As a result, PLA fibers were easily damaged by a low concentration of sodium hydroxide and a low treatment temperature. The optimal treatment conditions of Lipase from Candida cylindracea were pH 8.0, $40^{\circ}C$, and 1,000 U. The optimal treatment conditions for Lipase from Candida rugosa were pH 7.2, $37^{\circ}C$, and 1,000 U. The optimal treatment conditions for Lipase from Porcine pancreas were pH 8.0, $37^{\circ}C$, and 2,000 U. The moisture regain and dyeing ability of PLA fabrics increased and the tensile strength of PLA fabrics decreased. The results of surface morphology revealed that there were some cracks due to hydrolysis on the surface of the fiber.

Identification of ${\gamma}-Glutamylamine$ Cyclotransferase, as the Preform Enzyme at the Dormant Stage, From Soybean (Glycine max) Seeds

  • Kang, Hyeog;Park, Sung-Joon;Cho, Young-Dong
    • BMB Reports
    • /
    • 제30권6호
    • /
    • pp.438-442
    • /
    • 1997
  • ${\gamma}-Glutamylamine$ cyclotransferase was purified to homogeneity from soybean (Glycine max) seeds. To our knowledge, it is the first purification of the enzyme from plant origins. The molecular weight of the enzyme estimated by Sephacryl S-300 gel filtration and SDS-PAGE was 27,000, indicating that the enzyme is a monomer. The optimal pH for activity was 8.6. The Km value for ${\gamma}-glutamyldansylcadaverine$ was 11 ${\mu}M$. The enzymatic activity was substantially inhibited by the addition of p-chloromercuribenzoate and partially inhibited by the $Cu^{2+}$ ion. However, neither other modification reagents nor other divalent metal ions affected the enzymatic activity. The comparison between the enzymatic activities of seed extracts treated with cycloheximide and control extracts, and the detection of the same single protein band by western blot analysis at the dormant stage without inhibition with distilled water indicate that ${\gamma}-Glutamylamine$ cyclotransferase is already present at the dormant stage and gradually activated during germination in soybean seeds.

  • PDF