DOI QR코드

DOI QR Code

Digestive Enzymatic Compositions and Activities of the Digestive Diverticula in Three Species of Bivalves

이매패류 3종 소화맹낭의 소화효소 구성 및 활성도

  • Ju, Sun-Mi (Department of Aqualife Medicine, Chonnam National University) ;
  • Kwon, O-Nam (Marine Biology Center for Research and Education, Gangnung-Wonju National University) ;
  • Lee, Jung-Sick (Department of Aqualife Medicine, Chonnam National University)
  • 주선미 (전남대학교 수산생명의학과) ;
  • 권오남 (강릉원주대학교 해양생물교육센터) ;
  • 이정식 (전남대학교 수산생명의학과)
  • Received : 2011.11.14
  • Accepted : 2011.12.17
  • Published : 2011.12.31

Abstract

Digestive enzymatic compositions and activities in digestive diverticula of the three species of bivalves were investigated in this study. Mytilus galloprovincialis, Saxidomus purpuratus and Tegillarca granosa which were collected from southern coast of Korea on November 2010, were used for analysis. Amylase and cellulase occupied approximately 95% of digestive enzymes in digestive diverticula of M. galloprovincialis, S. purpuratus and T. granosa. The amylase and cellulase activities were 2.6 and 0.8 U/mg in M. galloprovincialis, 2.4 and 8.8 U/mg in S. purpuratus and 7.3 and 11.8 U/mg in T. granosa. And protease activities in digestive diverticula of M. galloprovincialis, S. purpuratus and T. granosa showed the lowest values to 0.00019, 0.00028 and 0.00022 U/mg, respectively.

본 연구는 3종의 이매패류를 대상으로 소화맹낭의 소화효소 구성 및 활성도에 대해 조사하였다. 본 연구에 사용된 이매패류는 지중해담치, 개조개 및 꼬막이며, 이들은 한국 남해안에서 2010년 11월에 채집하였다. 지중해담치, 개조개, 꼬막의 소화맹낭을 구성하는 소화효소는 amylase와 cellulase가 약 95%로 대부분을 차지하였다. 소화맹낭에서 amylase와 cellulase 활성도는 지중해담치는 2.6과 0.8 U/mg, 개조개는 2.4와 8.8 U/mg, 꼬막은 7.3과 11.8 U/mg였다. 그리고 소화맹낭의 소화효소 가운데 protease의 활성도는 지중해담치, 개조개, 꼬막에서 각각 0.00019, 0.00028, 0.00022 U/mg로 가장 낮았다.

Keywords

References

  1. Albentosa, M. and Moyano, F.J. (2009) Differences in the digestive biochemistry between the intertidal clam, Ruditapes decussatus, and the subtidal clam, Venerupis pullastra. Aquaculture International, 17: 273-282. https://doi.org/10.1007/s10499-008-9199-1
  2. Alyakrinskaya, I.O. (2001) The dimensions, characteristics and functions of the crystalline style of Molluscs. The Biological Bulletin, 28(5): 523-535. https://doi.org/10.1023/A:1016756629952
  3. Bernfeld, P. (1955) Amylases, alpha and beta. Methods in Enzymology, 1: 149-158. https://doi.org/10.1016/0076-6879(55)01021-5
  4. Bradford, M.M. (1967) A rapid and sensitive method for the quantitation of microgram quantities of characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese bovine insulin. Biochemistry, 6: 215-224. https://doi.org/10.1021/bi00853a034
  5. Brock, V. (1989) Crassostrea gigas (Thunberg) hepatopancreas-cellulase kinetics and cellulolysis of living monocellular algae with cellulose walls. Journal of Experimental Marine Biology and Ecology, 128(2): 157-164. https://doi.org/10.1016/0022-0981(89)90143-3
  6. Brock, V. and Kennedy, V.S. (1992) Quantitative analysis of crystalline style carbohydrases in five suspensionand deposit-feeding bivalves. Journal of Experimental Marine Biology and Ecology, 159(1): 51-58. https://doi.org/10.1016/0022-0981(92)90257-B
  7. Cho, Y., Ogawa, N., Takahashi, M., Lin, H.P., and Oshima, Y. (2008) Purification and characterization of paralytic shellfish toxin-transforming enzyme, sulfocarbamoylase I, from the Japanese bivalve Peronidia venulosa. Biochimica et Biophysica Acta, 1784: 1277-1285. https://doi.org/10.1016/j.bbapap.2008.05.008
  8. Fernandez-Reiriz, M.J., Labarta, U., Navarro, J.M. and Velasco, A. (2001) Enzymatic digestive activity in Mytilus chilensis (Hupe 1854) in response to food regimes and past feeding history. Journal of Comparative Physiology, 171: 203-221.
  9. Horiuchi, S. and Lane, C.E. (1966) Carbohydrases of the crystalline style and hepatopancreas of Strombus gigas Linne. Comparative Biochemistry and Physiology, Part A, 17(4): 1189-1197.
  10. Hung, T.C., Giridgar, R., Chiou, S.G. and Wu, W.T. (2003) Binary immobilization of Candida rugosa lipase on chitosan. Journal of Molecular Catalysis B: Enzymatic, 26: 69-78. https://doi.org/10.1016/S1381-1177(03)00167-X
  11. Ibarrola, I., Larretxea, X., Iglesias, J.I.P., Urrutia, M.B. and Navarro, E. (1998) Seasonal variation of digestive enzyme activities in the digestive gland and the crystalline style of the common cockle Cerastoderma edule. Comparative Biochemistry and Physiology, Part A, 121: 25-34. https://doi.org/10.1016/S1095-6433(98)10097-1
  12. Ju, S.M., Kwon, O.M., Kim, J.W., and Lee, J.S. (2011) Digestive enzyme activity within crystalline style in three species of bivalves. The Korean Journal of Malacology, 27(1): 9-14. https://doi.org/10.9710/kjm.2011.27.1.009
  13. Larsson, A.M., Anderson, L., Xu, B., Munoz, I.G., Uson, I., Janson, J.C., Stalbrand, H., and Stahlberg, J. (2006) Three-dimensional crystal structure and enzymic characterization of $\beta$-Mannanase Man5A from blue mussel Mytilus edulis. Journal of Molecular Biology, 357: 1500-1510. https://doi.org/10.1016/j.jmb.2006.01.044
  14. Lobo-da-Cunha, A. (1999) Ultrastructural and cytochemical aspects of the basophilic cells in the hepatopancreas of Aplysia depilans (Mollusca, Opisthobranchia). Tissue and Cell, 31: 8-16. https://doi.org/10.1054/tice.1998.0014
  15. Lobo-da-Cunha, A. (2000) The digestive cells of the hepatopancreas in Aplysia depilans (Mollusca, Opisthobranchia): Ultrastuctual and cytochemical study. Tissue and Cell, 32: 49-57. https://doi.org/10.1054/tice.1999.0082
  16. Miller, G.G., Blum, R., Glennon, W.E. and Burton, A.L. (1960) Measurement of carboxymethyl cellulase activity. Analytical Biochemistry, 1: 127-132. https://doi.org/10.1016/0003-2697(60)90004-X
  17. Monreal, J. and Reese, E.T. (1969) The chitinase of Serratia marcescens. Canadian Journal of Microbiology, 15: 689-696. https://doi.org/10.1139/m69-122
  18. Morton, B.S. (1983) Feeding and digestion in bivalves. In: Saleuddin, A.S.M. and Wilburg, M. (ed.) The Mollusca Physiology. Academic Press, New York, pp. 563-586.
  19. Owen, G. (1966) Digestion. In: Wilbur, K.M. and Yonge, C.M. (ed.) Physiology of Mollusca. Academic Press, New York, pp. 58-78.
  20. Owen, G. (1972) Lysosomes, peroxisomes and bivalves. Scientific Progress, Oxford, 60: 299-318.
  21. Reid, R.G.B. (1966) Digestive tract enzymes in the bivalves Lima hians (Gmelin) and Mya arenaria L.. Comparative Biochemistry and Physiology, 17: 417-433. https://doi.org/10.1016/0010-406X(66)90578-0
  22. Reid, R.G.B. and Sweeney, B. (1980) The digestibility of the bivalve crystalline style. Comparative Biochemistry and Physiology, Part B, 65(2): 451-453. https://doi.org/10.1016/0305-0491(80)90048-6
  23. Smucker, R.A. and Wright, D.A. (1984) Chitinase activity in the crystalline style of the American oyster Crassostrea virginica. Comparative Biochemistry and Physiology, Part A, 77(2): 239-241. https://doi.org/10.1016/0300-9629(84)90054-9
  24. Somogyi, M. (1952) Notes on sugar determination. Journal of Biological Chemistry, 195: 19-23.
  25. Stark, J.R. and Walker, R.S. (1983) Carbohydrate digestion in Pecten maximus. Comparative Biochemistry and Physiology, Part B, 76(1): 173-177.
  26. Sumner, A.T. (1969) The distribution of some hydrolytic enzymes in the cells of the digestive gland of certain lamellibranchs and gastropods. Journal of Zoology, London, 158: 277-291.
  27. Trainer, D.G. and Tillinghast, E.K. (1982) Amylolytic activity of the crystalline style of Mya arenaria (Bivalvia, Mollusca). Comparative Biochemistry and Physiology, Part A, 72(1): 99-103. https://doi.org/10.1016/0300-9629(82)90016-0
  28. Wojtowicz, M.B. (1972) Carbohydrases of the digestive gland and the crystalline style of the Atlantic deep-sea scallop (Placopecten magellanicus Gmelin). Comparative Biochemistry and Physiology, Part A, 43(1): 131-141. https://doi.org/10.1016/0300-9629(72)90475-6