• 제목/요약/키워드: environmental stress response

검색결과 545건 처리시간 0.027초

Antioxidant Defense and Lipid Peroxide Level in Liver and Kidneys of Lead Exposed Rats

  • Patra, R.C.;Swarup, D.;Dwivedi, S.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권10호
    • /
    • pp.1433-1439
    • /
    • 2000
  • An experiment was carried out with 48 IVRI 2CQ rats 6-8 week old, weighing 50-100 g, to study the effect of lead exposure on antioxidant defense, lipid peroxide level, status of thiol groups and concentration of lead in the liver and kidneys at the end of the exposure and also after withdrawal of lead administration. Twenty four rats were given lead at a daily dose rate of 1 mg lead/2 ml of distilled water/kg body weight as lead acetate solution intraperitoneally for a period of 30 days. Another 24 control rats received 2 ml of sterile normal saline solution (0.85% NaCl)/kg body weight in an identical manner. A many-fold increase in concentration of lead was associated with a non-significant (p>0.05) decrease in the activities of superoxide dismutase (SOD) in the liver (27%) and kidneys (12%) and catalase in kidneys (22%). A significant (p<0.05) increase in lipid peroxide level was recorded in the liver (40%) compared with control values. There were significant (p<0.05) decreases in the total thiol and protein bound thiol contents in liver and an increase in non-protein bound thiol groups in the kidneys of lead exposed rats. During the 10 day observation period after withdrawal of lead administration, no significant change was observed with respect to any of the above parameters indicating that a 10 day withdrawal period was not enough for restoration of normality. It is concluded that the magnitude of response and the resultant changes in the lipid peroxide concentration, and the activities of SOD and catalase were not identical in the liver and kidneys of lead-exposed rats.

기후변화 및 폭염대응 증발냉각시스템 적용에 따른 내·외부 열환경 변화 연구 (Thermal Environment Transition of Response Climate Change and Heat Wave Application Evaporative Cooling System)

  • 김정호;김학기;윤용한;권기욱
    • 한국환경과학회지
    • /
    • 제25권9호
    • /
    • pp.1269-1281
    • /
    • 2016
  • This study evaporative cooling system a heat wave climate change and reduction of the inside and outside thermal environment change research. Measurement items included micro meteorological phenomena and measured comfort indices. A micro meteorograph of temperature, relative humidity, surface temperature, and the comfort indices of WBGT, UTCI, and PMV were measured. The difference in inside and outside temperatures were compared for different land types, with the largest difference found in Type A ($4.81^{\circ}C$), followed by Type B ($4.40^{\circ}C$) and Type C ($3.12^{\circ}C$). Relative humidity was about 10.43% higher inside due to water injection by the evaporative cooling system. Surface temperature was inside about $6.60^{\circ}C$ higher than the outside all types. WBGT were Type A ($3.50^{\circ}C$) > Type B ($2.71^{\circ}C$) > Type C ($1.88^{\circ}C$). UTCI was low heat stress inside than outside all types. PMV was analysed Type C for inside predicted percentage of dissatisfied 75%, other types was percentage of dissatisfied 100% by inside and outside. Correlation analysis between land cover type and temperature, surface temperature, pmv, utci. T-test analysed inside and outside temperature difference was significant in all types of land.

현사시나무에서 SENESCENCE 1 유전자의 분리와 발현특성 구명 (Isolation and Characterization of a Putative SENESCENCE 1 Gene from Poplar (Populus alba × P. glandulosa))

  • 김준혁;이효신;최영임;배은경;윤서경;노설아
    • 한국자원식물학회지
    • /
    • 제27권4호
    • /
    • pp.392-399
    • /
    • 2014
  • 본 연구에서는 식물의 노쇠와 관련된 SENESCENCE 1 (SEN1) 유전자를 현사시나무에서 분리하고, 여러 가지 조건에서 발현 특성을 분석하였다. 현사시나무의 SEN1 유전자(PagSEN1)는 243개의 아미노산으로 이루어져 있고, 한 개의 rhodanese domain을 가지고 있다. Southern blot 분석 결과 PagSEN1 유전자는 현사시나무에서 2 copy 정도가 존재하는 것으로 나타났다. 조직 특이적 발현양상을 분석한 결과 PagSEN1 유전자는 성숙잎에서 가장 높게 발현하고, 뿌리에서 가장 낮게 발현하는 것으로 나타났다. 또한 mannitol과 염 스트레스 처리에 의해 300배 이상 발현이 증가한 반면에 저온 스트레스에는 반응하지 않았다. 식물 호르몬 처리에서는 ABA와 JA 처리 10시간 후에 발현이 3.5배와 2.4배 이상 증가하는 것으로 나타났다. 따라서 PagSEN1 유전자는 건조와 염 스트레스에 반응하며, 식물의 자연적 노쇠과정 뿐 아니라 스트레스와 같은 환경변화에 의해 유발되는 노쇠과정에도 관여하는 것으로 판단된다.

산화환원에 따른 hHSF1의 DNA binding domain의 역할 (The Role of DNA Binding Domain in hHSF1 through Redox State)

  • 김솔;황윤정;김희은;여명;김안드레;문지영;강호성;박장수
    • 생명과학회지
    • /
    • 제16권6호
    • /
    • pp.1052-1059
    • /
    • 2006
  • 다양한 종류의 박테리아에서부터 사람의 세포에 이르기까지 환경적인 스트레스나 병에 의한 스트레스 혹은 스트레스가 없는 상황에서도 열충격반응(heat shock response) 유도되어진다. 열충격반응에 노출된 세포에서는 모든 단백질의 발현이 정지되는 반면, 열충격단백질(heat shock proteins: HSPs)은 발현되어 스트레스로부터 세포를 보호한다. HSF1(heat shock factor 1)이라는 HSPs 유도단백질은 열충격반응시 단량체형태에서 삼중체의 형태로 구조변화를 일으켜 heat shock element(HSE)라고 불리우는 HSP gene의 발현 promoter에 특이적으로 결합하게 되어 HSPs를 발현시킨다. Human HSF1(hHSF1)은 다섯 개의 시스테인 잔기를 가지고 있는데 이 시스테인의 thiol(-SH)기는 강한 친전자성을 띔으로 급격히 산화되거나 질산화된다. 이러한 고찰은 시스테인 잔기가 산화 환원 의존적인 황산기/이황화결합 전환을 통해 구조적인 변화를 가져온다는 사실을 의미하고 있다. 따라서 본 연구에서는 여러 가지 산화환원제를 이용하여 HSF1에 존재하는 다섯 개의 시스테인 잔기의 역할과 삼량체 형성에 관여하는 잔기에 대하여 알아보고자 하였다. 또한 이황화결합을 통한 삼량체형성의 구조적변화의 관점에서 HSF1의 구조 변화와 DNA 결합력과의 상관관계에 관하여도 알아보고자 하였다. 본 연구결과로 HSF1의 DNA binding domain은 삼량체를 형성하는 구조적인 변화를 통해서 DNA에 대한 결합력이 증가되는 것을 알 수 있었는데 이것은 삼량체가 됨으로서 HSF1의 내부에 위치해 있던 DNA binding domain이 외부로 노출 되어져 DNA에 쉽게 결합할 수 있게 된다는 사실을 시사한다.

Induction of Phase I, II and III Drug Metabolism/Transport by Xenobiotics

  • Xu Chang Jiang;Li Christina YongTao;Kong AhNg Tony
    • Archives of Pharmacal Research
    • /
    • 제28권3호
    • /
    • pp.249-268
    • /
    • 2005
  • Drug metabolizing enzymes (DMEs) play central roles in the metabolism, elimination and detoxification of xenobiotics and drugs introduced into the human body. Most of the tissues and organs in our body are well equipped with diverse and various DMEs including phase I, phase II metabolizing enzymes and phase III transporters, which are present in abundance either at the basal unstimulated level, and/or are inducible at elevated level after exposure to xenobiotics. Recently, many important advances have been made in the mechanisms that regulate the expression of these drug metabolism genes. Various nuclear receptors including the aryl hydrocarbon receptor (AhR), orphan nuclear receptors, and nuclear factor-erythoroid 2 p45-related factor 2 (Nrf2) have been shown to be the key mediators of drug-induced changes in phase I, phase II metabolizing enzymes as well as phase III transporters involved in efflux mechanisms. For instance, the expression of CYP1 genes can be induced by AhR, which dimerizes with the AhR nuclear translocator (Arnt) , in response to many polycyclic aromatic hydrocarbon (PAHs). Similarly, the steroid family of orphan nuclear receptors, the constitutive androstane receptor (CAR) and pregnane X receptor (PXR), both heterodimerize with the ret-inoid X receptor (RXR), are shown to transcriptionally activate the promoters of CYP2B and CYP3A gene expression by xenobiotics such as phenobarbital-like compounds (CAR) and dexamethasone and rifampin-type of agents (PXR). The peroxisome proliferator activated receptor (PPAR), which is one of the first characterized members of the nuclear hormone receptor, also dimerizes with RXR and has been shown to be activated by lipid lowering agent fib rate-type of compounds leading to transcriptional activation of the promoters on CYP4A gene. CYP7A was recognized as the first target gene of the liver X receptor (LXR), in which the elimination of cholesterol depends on CYP7A. Farnesoid X receptor (FXR) was identified as a bile acid receptor, and its activation results in the inhibition of hepatic acid biosynthesis and increased transport of bile acids from intestinal lumen to the liver, and CYP7A is one of its target genes. The transcriptional activation by these receptors upon binding to the promoters located at the 5-flanking region of these GYP genes generally leads to the induction of their mRNA gene expression. The physiological and the pharmacological implications of common partner of RXR for CAR, PXR, PPAR, LXR and FXR receptors largely remain unknown and are under intense investigations. For the phase II DMEs, phase II gene inducers such as the phenolic compounds butylated hydroxyanisol (BHA), tert-butylhydroquinone (tBHQ), green tea polyphenol (GTP), (-)-epigallocatechin-3-gallate (EGCG) and the isothiocyanates (PEITC, sul­foraphane) generally appear to be electrophiles. They generally possess electrophilic-medi­ated stress response, resulting in the activation of bZIP transcription factors Nrf2 which dimerizes with Mafs and binds to the antioxidant/electrophile response element (ARE/EpRE) promoter, which is located in many phase II DMEs as well as many cellular defensive enzymes such as heme oxygenase-1 (HO-1), with the subsequent induction of the expression of these genes. Phase III transporters, for example, P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs), and organic anion transporting polypeptide 2 (OATP2) are expressed in many tissues such as the liver, intestine, kidney, and brain, and play crucial roles in drug absorption, distribution, and excretion. The orphan nuclear receptors PXR and GAR have been shown to be involved in the regulation of these transporters. Along with phase I and phase II enzyme induction, pretreatment with several kinds of inducers has been shown to alter the expression of phase III transporters, and alter the excretion of xenobiotics, which implies that phase III transporters may also be similarly regulated in a coordinated fashion, and provides an important mean to protect the body from xenobiotics insults. It appears that in general, exposure to phase I, phase II and phase III gene inducers may trigger cellular 'stress' response leading to the increase in their gene expression, which ultimately enhance the elimination and clearance of these xenobiotics and/or other 'cellular stresses' including harmful reactive intermediates such as reactive oxygen species (ROS), so that the body will remove the 'stress' expeditiously. Consequently, this homeostatic response of the body plays a central role in the protection of the body against 'environmental' insults such as those elicited by exposure to xenobiotics.

물질과 제품 사용에 의한 국내 중독(poisoning) 건수 추정 (Estimation of Poisoning Cases by Use of Chemicals and Chemical Products in South Korea)

  • 박소영;이예성;문은찬;남민우;김지원;박지훈;최원준;최상준;하권철;전형배;박동욱
    • 한국환경보건학회지
    • /
    • 제46권5호
    • /
    • pp.565-575
    • /
    • 2020
  • Objective: South Korea still lacks systematic national poisoning data collection or a poison control center (PC). The objectives of this study are to provide estimates of poisoning incidents in South Korea and to stress the necessity of a national poisoning surveillance framework managed by a national PC. Method: The number of poisoning incidents was estimated based on the 2018 annual report of the American Association of Poison Control Centers' National Poison Data System (NPDS). Our estimation of poisoning data was classified according to age group, reason for poison exposure, and case management site. Results: Total poisoning cases estimated numbered 326,636, which is tantamount to 631 cases per 100 thousand. Poisoning cases among those younger than five years old accounted for 71.7% in the United States. Fatal poisoning cases were estimated to be 210.63 (95% CI: 199.70-222.15). Non-intentional poisoning cases (250,378 cases, 95% CI: 249,992-250,764, 76.7%) were estimated to be far higher than intentional cases (62,399 cases, 95% CI: 62,207-62,593, 19.1%). Conclusion: Our results can be used to suggest the necessity of producing national poisoning data and establishing a PC despite the uncertainty of estimation.

Isolation of CONSTANS as a TGA4/OBF4 Interacting Protein

  • Song, Young Hun;Song, Na Young;Shin, Su Young;Kim, Hye Jin;Yun, Dae-Jin;Lim, Chae Oh;Lee, Sang Yeol;Kang, Kyu Young;Hong, Jong Chan
    • Molecules and Cells
    • /
    • 제25권4호
    • /
    • pp.559-565
    • /
    • 2008
  • Members of the TGA family of basic domain/leucine zipper transcription factors regulate defense genes through physical interaction with NON-EXPRESSOR OF PR1 (NPR1). Of the seven TGA family members, TGA4/octopine synthase (ocs)-element-binding factor 4 (OBF4) is the least understood. Here we present evidence for a novel function of OBF4 as a regulator of flowering. We identified CONSTANS (CO), a positive regulator of floral induction, as an OBF4-interacting protein, in a yeast two-hybrid library screen. OBF4 interacts with the B-box region of CO. The abundance of OBF4 mRNA cycles with a 24 h rhythm under both long-day (LD) and short-day (SD) conditions, with significantly higher levels during the night than during the day. Electrophoretic mobility shift assays revealed that OBF4 binds to the promoter of the FLOWERING LOCUS T (FT) gene, a direct target of CO. We also found that, like CO and FT, an OBF4:GUS construct was prominently expressed in the vascular tissues of leaf, indicating that OBF4 can regulate FT expression through the formation of a protein complex with CO. Taken together, our results suggest that OBF4 may act as a link between defense responses and flowering.

폭약 2,4,6-Trinitrotoluene에 노출된 분해세균 Stenotrophomonas sp. OK-5의 세포반응 (Cellular Responses of the TNT-degrading Bacterium, Stenotrophomonas sp. OK-5 to Explosive 2,4,6-Trinitrotoluene (TNT))

  • 장효원;송승열;김승일;강형일;오계헌*
    • 미생물학회지
    • /
    • 제38권4호
    • /
    • pp.247-253
    • /
    • 2002
  • 환경오염원으로서 폭약 2,4,6-trinitrotoluene (TNT)에 대한 TNT 분해세균 Stenotrophomonas sp. OK-5의 세포반응에 대하여 조사하였다. 아치사조건의 TNT농도와 노출시간에 따른 균주 OK-5의 생존율을 분석한 결과, 이 세균의 생존율은 스트레스 충격 단백질의 생성과 비례하였다. 총세포 지방산 조성분석에서 균주 OK-5는 tryp-ticase soy agar에서 자랄 때보다 TNT 배지에서 자랄 때 여러 가지 종류의 지방산이 생성되거나 사라지는 것이 밝혀졌다. 주사전자현미경하에서 TNT에 노출된 세포는 쭈글쭈글하고 불규칙적인 간상형으로 나타났다. Anti-DnaK와 anti-GroEL을 이용하여 SDS-PAGE와 Western blot을 통한 분석으로 균주 OK-5는 70 kDa DanK와 60 kDa GroEL을 포함하는 몇가지 스트레스충격단백질을 생성하는 것으로 밝혀졌다. TNT에 노출된 OK-5 배양에서 수용성 단백질 분획에 대하여 2-D PAGE를 실시하였으며, pH 3에서 pH 10의 범위에서 약 300여 개 spot들이 silver로 염색된 gel상에서 관찰되었다. 이들 가운데 TNT의 반응으로 현저하게 유도되고 발현된 10개의 spot들을 확인하였으며, 2개의 단백질, spot #1과 spot #10에 대한 내부아미노산 서열을 ESI-Q TOF로 분석한 결과, Xylella fastidiosa의 DnaK protein XF2340와 Mesorhizobium loti의 스트레스 유도단백질로 각각 밝혀졌다.

Sensing the Stress: the Role of the Stress-activated p38/Hog1 MAPK Signalling Pathway in Human Pathogenic Fungus Cryptococcus neoformans

  • Bahn, Yong-Sun;Heitman, Joseph
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2007년도 International Meeting of the Microbiological Society of Korea
    • /
    • pp.120-122
    • /
    • 2007
  • All living organisms use numerous signal-transduction pathways to sense and respond to their environments and thereby survive and proliferate in a range of biological niches. Molecular dissection of these signalling networks has increased our understanding of these communication processes and provides a platform for therapeutic intervention when these pathways malfunction in disease states, including infection. Owing to the expanding availability of sequenced genomes, a wealth of genetic and molecular tools and the conservation of signalling networks, members of the fungal kingdom serve as excellent model systems for more complex, multicellular organisms. Here, we employed Cryptococcus neoformans as a model system to understand how fungal-signalling circuits operate at the molecular level to sense and respond to a plethora of environmental stresses, including osmoticshock, UV, high temperature, oxidative stress and toxic drugs/metabolites. The stress-activated p38/Hog1 MAPK pathway is structurally conserved in many organisms as diverse as yeast and mammals, but its regulation is uniquely specialized in a majority of clinical Cryptococcus neoformans serotype A and D strains to control differentiation and virulence factor regulation. C. neoformans Hog1 MAPK is controlled by Pbs2 MAPK kinase (MAPKK). The Pbs2-Hog1 MAPK cascade is controlled by the fungal "two-component" system that is composed of a response regulator, Ssk1, and multiple sensor kinases, including two-component.like (Tco) 1 and Tco2. Tco1 and Tco2 play shared and distinct roles in stress responses and drug sensitivity through the Hog1 MAPK system. Furthermore, each sensor kinase mediates unique cellular functions for virulence and morphological differentiation. We also identified and characterized the Ssk2 MAPKKK upstream of the MAPKK Pbs2 and the MAPK Hog1 in C. neoformans. The SSK2 gene was identified as a potential component responsible for differential Hog1 regulation between the serotype D sibling f1 strains B3501 and B3502 through comparative analysis of their meiotic map with the meiotic segregation of Hog1-dependent sensitivity to the fungicide fludioxonil. Ssk2 is the only polymorphic component in the Hog1 MAPK module, including two coding sequence changes between the SSK2 alleles in B3501 and B3502 strains. To further support this finding, the SSK2 allele exchange completely swapped Hog1-related phenotypes between B3501 and B3502 strains. In the serotype A strain H99, disruption of the SSK2 gene dramatically enhanced capsule biosynthesis and mating efficiency, similar to pbs2 and hog1 mutations. Furthermore, ssk2, pbs2, and hog1 mutants are all hypersensitive to a variety of stresses and completely resistant to fludioxonil. Taken together, these findings indicate that Ssk2 is the critical interface protein connecting the two-component system and the Pbs2-Hog1 pathway in C. neoformans.

  • PDF

생식생장기 수분스트레스 처리가 억새의 출수율 및 생육 변화에 미치는 영향 (Changes in Miscanthus sacchariflorus Growth and Heading Rate Influenced by Water Stress Treatment at Reproductive Growth Stage)

  • 이지은;차영록;문윤호;김광수;권다은;강용구
    • 한국작물학회지
    • /
    • 제63권4호
    • /
    • pp.390-398
    • /
    • 2018
  • 생식생장기 장기간의 건조와 침수 스트레스 하에서 물억새와 거대1호의 생육 및 양분함량 변화를 비교분석한 결과는 다음과 같다. 1. 건조 처리에 의한 두 억새 종의 형태적 특성 변화는 없었으나, 침수 처리에 의해 거대1호의 초장은 256.6 cm로 증가하였으며 마디수 또한 16.8개로 증가하였다. 2. 물억새의 출수율은 건조 조건에서 18.9%로 감소하였으나 침수 조건에서는 대조구와 통계적 유의성을 보이지 않았다. 거대1호는 대조구와 건조구에서 모두 출수하지 않았으며, 침수처리에 의해 48.6%의 출수율을 보였다. 3. 주요 양분인 유리당, 전질소, 인산, 칼륨, 마그네슘은 두 억새 모두 건조처리구에서 가장 높았으며, 칼슘과 마그네슘의 경우 침수처리구에서 두 억새 모두 3배이상 감소하였다. 4. 이러한 양분 변화는 건조처리에 의해 억새의 노화가 촉진되어 양분 이동이 저해된 결과로 사료되며, 침수 처리는 거대1호의 출수를 촉진한다는 결과를 처음으로 확인하였다.