• Title/Summary/Keyword: environmental quantification

Search Result 502, Processing Time 0.02 seconds

Risk Assessment about Heavy Metals Contamination in Agricultural Products at Abandoned Mine Area (폐광산 인근 지역에서 생산되는 농산물의 중금속 오염도 평가)

  • An, Jae-Min;Chang, Soon-Young;Hwang, Hyang-Ran;Park, Dae-Han;Lee, Bom-Nae;Kim, Saet-Byeol;Lee, Gwang-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.1
    • /
    • pp.10-19
    • /
    • 2020
  • BACKGROUND: This study was to carry out risk assessment of contamination of cadmium (Cd), lead (Pb), and inorganic arsenic (I-As) in agricultural products of 25 crops from the abandoned mine areas. The 36 typical investigation sites located in Gyeongbuk provincial area were selected by considering the heavy metal levels, that had been known that the amount of the heavy metals exceeded the contamination level based on the previous survey. METHODS AND RESULTS: Cadmium, lead, and total arsenic (T-As) concentrations were determined using microwave device and ICP-MS. Inorganic arsenic was determined by HPLC-ICP-MS. The limits of quantification for heavy metals were 0.59 ㎍/kg for Cd, 0.42 ㎍/kg for Pb, 0.55 ㎍/kg for T-As, and sum of As (III) (1.74 ㎍/kg) and As (V) (2.25 ㎍/kg) for I-As, respectively. The contents of Cd, Pb, and I-As (only rice) were N.D.-0.958 mg/kg, N.D.-0.227 mg/kg, and 0.082 mg/kg, respectively, in the agricultural products. For risk assessment, dietary exposures of heavy metals through usual intake were 5.20×10-4-7.15×100 ㎍/day for Cd, 7.00×10-5-7.75×10-1 ㎍/day for Pb, and 1.17×101 ㎍/day for I-As, taking 0.01-14.37%, 0.01-2.05%, and 15.16% as risk indices, respectively. CONCLUSION: It requires to consider the critical levels of heavy metals in agricultural products due to unexpectedly high levels in a few places, while concentrations of heavy metals in the samples were relatively low in most areas.

Development of a Simultaneous Analytical Method for Determination of Trinexapac-ethyl and Trinexapac in Agricultural Products Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 식물생장조절제 Trinexapac-ethyl과 대사산물 Trinexapac의 동시분석법 개발)

  • Jang, Jin;Kim, Heejung;Ko, Ah-Young;Lee, Eun-Hyang;Ju, Yunji;Chang, Moon-Ik;Rhee, Gyu-Seek;Suh, Saejung
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.4
    • /
    • pp.318-327
    • /
    • 2015
  • BACKGROUND: Trinexapac-ethyl is a plant growth regulator (PGR) that inhibits the biosynthesis of plant growth hormone (gibberellin). It is used for the prevention of lodging, increasing yields of cereals, and reducing mowing of turf. The experiment was conducted to establish a determination method for trinexapac-ethyl and its metabolites trinexapac in agricultural products using LC-MS/MS.METHODS AND RESULTS: Trinexapac-ethyl and trinexapac were extracted from agricultural products with methanol/ distilled water and the extract was partitioned with dichloromethane and then detected by LC-MS/MS. Limit of detection(LOD) was 0.003 mg/kg and limit of quantification(LOQ) was 0.01 mg/kg, respectively. Matrix matched calibration curves were linear over the calibration ranges (0.01-1.0 mg/L) for all the analytes into blank extract withr2> 0.997. For validation purposes, recovery studies were carried out at three different concentration levels (LOQ, 10LOQ, 50LOQ,n=5). Recoveries of trinexapacethyl and trinexapac were within the range of 73.6-106.9%, 72.7-99.2%, respectively. The relative standard deviations (RSDs) were less than 9.0%. All values were consistent with the criteria ranges requested in the CODEX guideline(CAC/GL 40, 2003).CONCLUSION: The proposed analytical method was accurate, effective and sensitive for trinexapac-ethyl and trinexapac determination and it can be used to as an official method in Korea.

Performance of Occupational Health Services by Type of Service : Cost Benefit Analysis (사업장 보건관리 사업의 형태별 수행성과 분석 -비용편익 분석을 중심으로-)

  • Cho, Tong Ran;Kim, Hwa Joong
    • Korean Journal of Occupational Health Nursing
    • /
    • v.4
    • /
    • pp.5-29
    • /
    • 1995
  • Occupational health services in Korea have been operated as dual types : one is operated by occupational health care manager and the other is health care agency without their own personnel. The performance of occupational health service should be different due to the variety of characteristics of health care manager and workplace, qualification of health care manager. This study is to analyze performance of occupational health care services with a particular consideration of job performance shape and efficiency, based on comparing those two types of health care management to show on the basic data for the settlement of more qualitative health care management system at workplace. For this study, total 391 places in Seoul and Inchon city area ; 154 places (39.4%) managed by designated health care manager and 237 places (60.6%) by the agency with their commission are selected as research samples. Tools for data collection are questionnares that have been investigated during the period of 20 September 1993-20 December 1993. Those data are compared with percentiles, mean, standard deviation and B/C ratio using SPSS PC program. Conclusions observed from the tests and each comparison could be summerized as follows : 1. Occupational health care have been accomplished at workplaces with designated people than with agencies people, and coverage rate of the occupational health care services has differences, due to management types. The reason of these results is due to visit only one or two times monthly by the agencies, while their own health care manager obsess, at the workplaces all the times. 2. Most of the expense for environmental control of all health care services expenditures shows that there is almost no fundamental improvement because more expenses are needed for procuring personal protective equipment and measuring work environment instead of environmental improvement. 3. It is investigated how much the cost of occupational health care services needs per worker, and calculated how much the cost needs per service hour per worker. The results from this show that the cost of occupational health services at workplaces with their own managers used less than the cost of health care agencies, eventually the former gives better services with less cost than the latter. 4. Benefit/Cost ratio is also produced by total benefit/total cost. The result from the above way reads 4.57 as a whole, while their own manager having workplaces reads 4.82 and the agencies do l.56. Even if their own manager performing workplaces spent more cost, this system produces more benefit than the agencies management. 5. The B/C ratio for medical organization such as local clinic, health care center and pharmacy shows more than or equal to at the workplaces controlled by the agencies. It is inferred that benefit would be much less than the cost used, with so being inefficient. 6. It is assumed that the efficiency ratio of health education is equal to reduction rate of workers medical organization visit. Estimated reduction rate 5%, 10%, 15%, show that the efficiency ratio of health education have an effect on producing benefits. It is estimated that more benefit can be produced if more qualitative education will be provided for enhancing health care efficiency. 7. Results of this study cannot be generalized because there are large scale of deviation in case of workplaces with less than 300 full time workers, but B/C ratio reads 2.69 as a whole and 3.25 at workplaces with their own health care manager are higher than 1.63 at the workplaces manged by the agencies. Finally, all the benefit concerning health care services could not be quantified, measured and shown on the value of money. This is a reason that a considerable part of benefits are so underestimated. This is also thought that measurement tools should be developed for measuring benefits of health care services with a comprehensive quantification. in the future. It is also expected that efficiency of occupational health care services should be investigated using cost-effectiveness analysis.

  • PDF

Risk Assessment of Operator Exposure During Treatment of Fungicide Dithianon on Apple Orchard (사과 과수원에서 농약살포시 살균제 Dithianon의 농작업자 위해성 평가)

  • Cho, ll Kyu;Kim, Su Jin;Kim, Ji Myung;Oh, Young Goun;Seol, Jae Ung;Lee, Ji Ho;Kim, Jeong Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.302-311
    • /
    • 2018
  • BACKGROUND: Dithianon (75%) formulation were mixed and sprayed as closely as possible by normal practice on the ten farms located in the Mungeong of South Korea. Patches, cotton gloves, socks, masks, and XAD-2 resin were used for measurement of the potential exposure of dithianon on the applicators wearing standardized whole-body outer and inner dosimeter (WBD). This study has been carried out to determine the dermal and inhalation exposure to dithianon during preparation of spray suspension and application with a power sprayer on a apple orchard. METHODS AND RESULTS: A personal air monitor equipped with an air pump, IOM sampler and cassette, and glass fiber filter was used for inhalation exposure. The field studies were carried out in a apple orchard. The temperature and relative humidity were monitored with a thermometer and a hygrometer. Wind speed was measured using a pocket weather meter. All mean field fortification recoveries were between 85.1% and 99.1% in the level of 100 LOQ (limit of quantification), while the LOQ for dithianon was $0.05{\mu}g/mL$ using HPLC-DAD. The exposure to dithianon on arms of the mixer/loader (0.0794 mg) was higher than other body parts (head, hands, upper body, or legs). The exposure to dithianon on the applicator's legs (3.78 mg) was highest in the body parts. The dermal exposures for mixer/loader and applicator were 10 and 8.10 mg, respectively, from a grape orchard. The inhalation exposure during application was estimated as 0.151 mg, and the ratio of inhalation exposure was 11.2% of the dermal exposure (inner clothes). CONCLUSION: The dermal and inhalation exposure on the applicator appeared to be 4.203 mg - 25.064 mg and $0.529{\mu}g-116.241{\mu}g$, respectively. The total exposures on the agricultural applicators were at the level of 2.596 mg - 25.069 mg to dithianon during treatment for apple orchard. The TER showed 3.421 (>1) when AOEL of dithianon was used as a reference dose for the purpose of risk assessment of the mixing/loading and application.

Study for Residue Analysis of Herbicide, Clopyralid in Foods (식품 중 제초제 클로피랄리드(Clopyralid)의 잔류 분석법)

  • Kim, Ji-young;Choi, Yoon Ju;Kim, Jong Su;Kim, Do Hoon;Do, Jung Ah;Jung, Yong Hyun;Lee, Kang Bong;Kim, Hyo Chin
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.283-290
    • /
    • 2018
  • BACKGROUND: Pesticide residue analysis is an essential activity in order to establish the food safety of agricultural products. Analytical approaches to the food safety are required to meet internationally the guideline of Codex (Codex Alimentarius Commission, CAC/GL 40). In this study, we developed a liquid chromatograph-tandem mass spectrometer (LC-MS/MS) method to determine the herbicide clopyralid in food matrixes. METHODS AND RESULTS: Clopyralid was extracted with aqueous acetonitrile containing formic acid and the extracts were mixed in a citrate buffer consisted of magnesium sulfate anhydrous, NaCl, sodium citrate dihydrate and disodium hydrogencitrate sesquihydrate followed by centrifugation. The supernatants were filtered through a nylon membrane filter and used for the analysis of clopyralid. The method was validated by accuracy and precision experiments on the samples fortified at 3 different levels of clopyralid. LC-MS/MS in positive mode was employed to quantitatively determine clopyralid in the food samples. Matrix-matched calibration curves were inearranged from 0.001 to 0.25 mg/kg with r2 > 0.994. The limits of detection and quantification were determined to be 0.001 and 0.01 mg/kg, respectively. There covery values of clopyralid for tified at 0.01 mg/kg in the control samples ranged from approximately 82 to 106% with relative standard deviations below 2 0%. CONCLUSION: The method developed in this study meets successfully the Codex guideline for pesticide residue analysis in food samples. This, the method could be applicable to determine pesticides in foods produced domestically and internationally.

Comparative Analysis of Nitrogen Concentration of Rainfall in South Korea for Nonpoint Source Pollution Model Application (비점오염모델 적용을 위한 우리나라 행정구역별 강수 중 질소농도 비교분석)

  • Choi, Dong Ho;Kim, Min-Kyeong;Hur, Seung-Oh;Hong, Sung-Chang;Choi, Soon-Kun
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.3
    • /
    • pp.189-196
    • /
    • 2018
  • BACKGROUND: Water quality management of river requires quantification of pollutant loads and implementation of measures through monitoring study, but it requires labour and costs. Therefore, many researchers are performing nonpoint source pollution analysis using computer models. However, calibration of model parameters needs observed data. Nitrogen concentration in rainfall is one of the factors to be considered when estimating the pollutant loads through application of the nonpoint source pollution model, but the default value provided by the model is used when there are no observed data. Therefore, this study aims to provide the representative nitrogen concentration of the rainfall for the administrative district ensuring rational modeling and reliable results. METHODS AND RESULTS: In this study, rainfall monitoring data from June 2015 to December 2017 were used to determine the nitrogen concentration in rainfall for each administrative district. Range of the $NO_3{^-}$ and $NH_4{^+}$ concentrations were 0.41~6.05 mg/L, 0.39~2.27 mg/L, respectively, and T-N concentration was 0.80~7.71 mg/L. Furthermore, the national average of T-N concentration in this study was $2.84{\pm}1.42mg/L$, which was similar to the national average of T-N 3.03 mg/L presented by the Ministry of Environment in 2015. Therefore, the nitrogen concentrations suggested in this study can be considered to be resonable values. CONCLUSION: The nitrogen concentrations estimated in this study showed regional differences. Therefore, when estimating the pollutant loads through application of the nonpoint source pollution model, resonable parameter estimation of nitrogen concentration in rainfall is possible by reflecting the regional characteristics.

A Study on the Soil Respiration in Cutting and Uncutting Areas of Larix leptolepis Plantation (잎갈나무조림지의 벌목지와 비벌목지의 토양호흡에 관한 연구)

  • Lee, Kyu-Jin;Mun, Hyeong-Tae
    • Journal of Life Science
    • /
    • v.20 no.9
    • /
    • pp.1353-1357
    • /
    • 2010
  • Quantification of the ecosystem respiration is essential in understanding the carbon cycling of natural and disturbed landscapes. Soil respiration and some environmental factors which affect soil respiration were investigated in a Larix leptolepis plantation inKongju, Korea. Soil respiration was measured at midday of the $15^{th}$ and $30^{th}$ day of every month from May to December in a non-cutting area (Control) and a cutting area (Treatment) with IRGA Soil Respiration Analyzer. Throughout the study period, average soil temperature and water content were $23.3{\pm}0.5^{\circ}C$ and $27.76{\pm}7.12%$ for control, and $25.9{\pm}3.1^{\circ}C$ and $24.55{\pm}5.12%$ for treatment, respectively. There was a positive correlation ($R^2$=0.8905) between soil respiration and soil temperature in the study area. However, there was no significant correlation between soil respiration and soil moisture ($R^2$=0.4437). The seasonal soil respiration increased in the summer and decreased in the winter. In August, maximum soil respirations in the control and treatment areas were $0.82{\pm}0.13$ and $1.32{\pm}0.10$ $gCO_2{\cdot}^{-2}{\cdot}r^{-1}$, respectively. Total amounts of $CO_2$ evolution in the control and treatment areas from May to December in 2008 were 2,419.2 and 3,610.8 $CO_2g{\cdot}m^{-2}$, respectively. The amount of soil respiration in the treatment area was 49.3% greater than in the control. Increased soil respiration in the treatment area may be due to increased soil temperature, which drives increased microbial decomposition. According to our present investigation, forest cutting will increase the atmospheric $CO_2$ by increasing soil respiration.

Biogeochemical Studies on Tidal Flats in the Kyunggi Bay: Introduction (경기만 부근 갯벌의 생지화학적 연구: 서문)

  • Cho, B.C.;Choi, J.K.;Lee, T.S.;An, S.;Hyun, J.H.
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Tidal flats have been regarded to carry out transformation and removal of land-derived organic matter, and this purifying capability of organic matter by tidal flats is one of very important reasons for their conservation. However, integral biogeochemical studies on production and decomposition of organic matter by benthic microbes in tidal flats have been absent in Korea, although the information is indispensable to quantification of the purifying capability. Our major goals in this multidisciplinary research were to understand major biogeochemical processes and rates mediated by diverse groups of microbes dominating material cycles in the tidal flats, and to assess the contribution of benthic microbes to removal of organic matter and nutrients in the tidal flats. Our study sites were Ganghwa and Incheon north-port tidal flats that had been regarded as naturally well reserved and organically polluted, respectively. Our research group measured over 3 years primary production, biomass and community structure of primary producers, abundance and production of bacteria, enzyme activities, distribution of protozoa and protozoan grazing rates, rates of denitrification and sulfate reduction, early sediment diagenesis, primary production and respiration based on oxygen microelectrode. We analyzed major features of each biogeochemical process and their interactions. The results are compiled in the following articles in this special issue: An (2005), Hwang and Cho (2005), Mok et at. (2005), Na and Lee (2005), Yang et at. (2005), and Yoo and Choi (2005).

Analytical Methods of Hydroxyl Radical Produced by TiO2 Photo-catalytic Oxidation (TiO2 광촉매 산화 반응에서 생성된 수산기 라디칼 분석 방법)

  • Kim, Seong Hee;Lee, Sang-Woo;Kim, Jeong Jin;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.245-253
    • /
    • 2015
  • The performance of $TiO_2$ photo-catalytic oxidation process is significantly dependent on the amount of hydroxyl radicals produced during the process, and it is an essential prerequisite to quantify its production. However, precise and accurate methods for quantification of hydroxyl radicals have not been developed so far. For this reason, this study was initiated to compare existing methods for analysis of hydroxyl radicals produced by $TiO_2$ photo-catalytic oxidation and to propose a new method to overcome the limitation of established methods. To simulate $TiO_2$ photo-catalytic oxidation process, Degussa P25 which has been widely used as a standard $TiO_2$ photo-catalyst was used with the dose of 0.05 g/L. The light source of process was UVC mercury low-pressure lamp (11 W, $2,975mW/cm^2$). The results indicate that both potassium iodide (KI)/UV-vis spectrometer and terephthalic acid (TPA)/fluorescence spectrometer methods could be applied to qualitatively measure hydroxyl radicals via detection of triiodide ion ($I_3{^-}$) and 2-hydroxyterephthalic acid which are produced by reactions of iodine ion ($I^-$) and TPA with hydroxyl radicals, respectively. However, it was possible to quantitatively measure hydroxyl radicals using TPA method coupled with high-performance liquid chromatograph (HPLC). The analytical results using TPA/HPLC method show that hydroxyl radical of 0.013 M was produced after 8 hours operation of photo-catalytic oxidation under specific experimental conditions of this study. The proposed method is expected to contribute to precise the evaluation of the performance of photo-catalytic oxidation process.

Quantification of Temperature Effects on Flowering Date Determination in Niitaka Pear (신고 배의 개화기 결정에 미치는 온도영향의 정량화)

  • Kim, Soo-Ock;Kim, Jin-Hee;Chung, U-Ran;Kim, Seung-Heui;Park, Gun-Hwan;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.2
    • /
    • pp.61-71
    • /
    • 2009
  • Most deciduous trees in temperate zone are dormant during the winter to overcome cold and dry environment. Dormancy of deciduous fruit trees is usually separated into a period of rest by physiological conditions and a period of quiescence by unfavorable environmental conditions. Inconsistent and fewer budburst in pear orchards has been reported recently in South Korea and Japan and the insufficient chilling due to warmer winters is suspected to play a role. An accurate prediction of the flowering time under the climate change scenarios may be critical to the planning of adaptation strategy for the pear industry in the future. However, existing methods for the prediction of budburst depend on the spring temperature, neglecting potential effects of warmer winters on the rest release and subsequent budburst. We adapted a dormancy clock model which uses daily temperature data to calculate the thermal time for simulating winter phenology of deciduous trees and tested the feasibility of this model in predicting budburst and flowering of Niitaka pear, one of the favorite cultivars in Korea. In order to derive the model parameter values suitable for Niitaka, the mean time for the rest release was estimated by observing budburst of field collected twigs in a controlled environment. The thermal time (in chill-days) was calculated and accumulated by a predefined temperature range from fall harvest until the chilling requirement (maximum accumulated chill-days in a negative number) is met. The chilling requirement is then offset by anti-chill days (in positive numbers) until the accumulated chill-days become null, which is assumed to be the budburst date. Calculations were repeated with arbitrary threshold temperatures from $4^{\circ}C$ to $10^{\circ}C$ (at an interval of 0.1), and a set of threshold temperature and chilling requirement was selected when the estimated budburst date coincides with the field observation. A heating requirement (in accumulation of anti-chill days since budburst) for flowering was also determined from an experiment based on historical observations. The dormancy clock model optimized with the selected parameter values was used to predict flowering of Niitaka pear grown in Suwon for the recent 9 years. The predicted dates for full bloom were within the range of the observed dates with 1.9 days of root mean square error.