DOI QR코드

DOI QR Code

A Study on the Soil Respiration in Cutting and Uncutting Areas of Larix leptolepis Plantation

잎갈나무조림지의 벌목지와 비벌목지의 토양호흡에 관한 연구

  • Received : 2010.06.09
  • Accepted : 2010.08.27
  • Published : 2010.09.30

Abstract

Quantification of the ecosystem respiration is essential in understanding the carbon cycling of natural and disturbed landscapes. Soil respiration and some environmental factors which affect soil respiration were investigated in a Larix leptolepis plantation inKongju, Korea. Soil respiration was measured at midday of the $15^{th}$ and $30^{th}$ day of every month from May to December in a non-cutting area (Control) and a cutting area (Treatment) with IRGA Soil Respiration Analyzer. Throughout the study period, average soil temperature and water content were $23.3{\pm}0.5^{\circ}C$ and $27.76{\pm}7.12%$ for control, and $25.9{\pm}3.1^{\circ}C$ and $24.55{\pm}5.12%$ for treatment, respectively. There was a positive correlation ($R^2$=0.8905) between soil respiration and soil temperature in the study area. However, there was no significant correlation between soil respiration and soil moisture ($R^2$=0.4437). The seasonal soil respiration increased in the summer and decreased in the winter. In August, maximum soil respirations in the control and treatment areas were $0.82{\pm}0.13$ and $1.32{\pm}0.10$ $gCO_2{\cdot}^{-2}{\cdot}r^{-1}$, respectively. Total amounts of $CO_2$ evolution in the control and treatment areas from May to December in 2008 were 2,419.2 and 3,610.8 $CO_2g{\cdot}m^{-2}$, respectively. The amount of soil respiration in the treatment area was 49.3% greater than in the control. Increased soil respiration in the treatment area may be due to increased soil temperature, which drives increased microbial decomposition. According to our present investigation, forest cutting will increase the atmospheric $CO_2$ by increasing soil respiration.

공주 근교의 일본잎갈나무 조림지에서 벌목이 이루어지지 않은 비벌목지를 대조구, 벌목이 이루어진 벌목지를 처리구로 설정하여 토양호흡과 호흡에 영향을 주는 토양온도, 토양수분을 2008년 5월부터 12월까지 2주 간격으로 측정하였다. 조사기간 동안 대조구와 처리구의 평균 토양온도는 각각 $23.3{\pm}0.5^{\circ}C$, $25.9{\pm}3.1^{\circ}C$으로 처리구에서 높았으며, 토양수분은 각각 $27.76{\pm}7.12%$, $24.55{\pm}5.12%$으로 처리구에서 낮게 나타났다. 토양호흡량은 봄부터 하절기로 이행함에 따라 증가한 후 동절기에 이르기까지 감소하는 경향을 보였으며, 토양호흡과 토양온도와는 높은 상관관계($R^2$=0.8747)가 있었으나, 토양수분과는 유의성이 높지 않았다($R^2$=0.4437). 토양호흡량은 대조구와 처리구에서 모두 8월에 가장 높았으며, 이때 대조구와 처리구의 평균 토양호흡량은 각각 $0.82{\pm}0.13$, $1.32{\pm}0.10$ $CO_2g{\cdot}m^{-2}{\cdot}hr^{-1}$으로 나타났다. 대조구와 처리구에서 5월부터 12월까지 측정된 전체 호흡량은 각각 2,419.2, 3,610.8 $CO_2g{\cdot}m^{-2}$으로 대조구에 비해 처리구에서 49.3% 높은 것으로 나타났다. 본 연구의 결과 인위적인 삼림의 벌목은 토양 호흡량을 증가시켜 대기 중의 이산화탄소를 증가시킬 것으로 판단된다.

Keywords

References

  1. Berg, B. and R. Laskowski. 2006. Litter decomposition: A guide to carbon and nutrient turnover. Elsevier, New York.
  2. Bonan, G. B. and K. Van Cleve. 1991. Soil temperature, nitrogen mineralization and carbon source-sink relationships in boreal forest. Can. J. For. Res. 22, 629-639. https://doi.org/10.1139/x92-084
  3. Bremner, J. L. and T. G. Huntington. 1995. The effects of temperature and moisture on dormant season soil respiration in a southern piedmont forest. Agron. Abst. pp. 309.
  4. Bridgham, S. D. and C. J. Richardson. 1992. Mechanisms controlling soil respiration ($CO_2$ and $CH_4$) in southern peatlands. Soil Biol. Biochem. 24, 1089-1099. https://doi.org/10.1016/0038-0717(92)90058-6
  5. Ceulemans, R., I. A. Janssens, and M. E. Jach. 1999. Effects of enrichment on trees and forests: Lessons to be learned in view of future ecosystem studies. Annals of Botany 84, 577-590. https://doi.org/10.1006/anbo.1999.0945
  6. Choi, J. S. and H. T. Mun. 2004. Effects of nitrogen addition on soil respiration. Korean J. Ecol. 27, 155-159. https://doi.org/10.5141/JEFB.2004.27.3.155
  7. Crapo, N. L. and D. C. Coleman. 1972. Root distribution and respiration in a Carolina old field. Oikos 23, 137-139. https://doi.org/10.2307/3543935
  8. Gordon, A. M., R. E Schlentner, and K. Van Cleve. 1987. Seasonal patterns of soil respiration and CO2 evolution following harvesting in the white spruce forests of interior Alaska. Can. J. For. Res. 17, 304-310. https://doi.org/10.1139/x87-051
  9. Harmon, M. E., W. K. Ferrel, and J. F. Franklin. 1990. Effects of carbon storage on conversion of old-growth forests to youbg forests. Science 247, 699-702. https://doi.org/10.1126/science.247.4943.699
  10. Kimble, J. M., L. S. Heath, R. A. Birdsey, and R. Lal. 2003. pp. 429, The potential of U.S. forest soils to sequester carbon and mitigate the greenhouse effect. CRC Press, New York.
  11. Knapp, A. K., S. L. Conard, and J. M. Blair. 1998. Detemination of soil $CO_2$ flux from a subhumid glassland: Effects of fire and fire history. Ecological Application 4, 760-770.
  12. Kursar, T. A. 1989. Evolution of soil respiration and soil $CO_2$ concentration in a lowland moist forest in Panama. Plant Soil 113, 19-21.
  13. Lee, Y. Y. and H. T. Mun. 2001. A study on the soil respirationin Quercus acutissima forest. Korean J. Ecol. 24, 141-147.
  14. Lloyd, J. and J. A. Taylor. 1994. On the temperature dependence of soil respiration. Functional Ecol. 8, 315-323. https://doi.org/10.2307/2389824
  15. MacDonald, N. W., D. R. Zak, and K. S. Pregitzer. 1995. Temperature effects on kinetics of microbial respiration and net nitrogen and sulfur mineralization. Soil Sci. Soc. Am. J. 59, 223-240.
  16. Maier, C. A. and L. W. Kress. 2000. Soil $CO_2$ evolution and root respiration in 11year-old loblolly pine (Pinus taeda) plantations as affected by mositure and nutrient availability. Can. J. For. Res. 30, 347-359. https://doi.org/10.1139/cjfr-30-3-347
  17. McHale, P. J., M. J. Mitchell, and F. P. Bowles. 1998. Soil warming in a northern hardwood forest: trace gas fluxes and leaf litter decomposition. Can. J. For. Res. 28, 1365-1372. https://doi.org/10.1139/cjfr-28-9-1365
  18. Nakane, K. 1995. Soil carbon cycling in a Japanese cedar (Cryptomeria japonica) plantation. For. Ecol. Manag. 72, 185-197. https://doi.org/10.1016/0378-1127(94)03465-9
  19. Pacific, V. J., B. L. McGlynn, D. A. Riveros-Iregui, D. L. Welsch, and H. E. Epstein. 2008. Variability in soil respiration across riparian-hillslope transitions. Biogeochem. 91, 51-70. https://doi.org/10.1007/s10533-008-9258-8
  20. Popescu, O. 2001. Soil carbon dioxide efflux in a naturally regenerated and a planted clear-cut on the Virginia Piedmont. Thesis for Master Degree. Blacksburg. Virginia.
  21. Pregitzer, K. S. 2003. Carbon cycling in forest ecosystems with anemphasis on belowground processes, pp. 93-107, In Kimble, J. M., L. S. Heath, R. A. Birdsey, and R. Lal (eds.), The potential of U.S. forest soils to sequester carbon and mitigate the greenhouse effect. CRC Press, New York.
  22. Raich, J. W. and C. S. Potter. 1995. Global patterns of carbon dioxide emission from soils. Global Biochemical Cycles 9, 23-36. https://doi.org/10.1029/94GB02723
  23. Reiners, W. A. 1968. Carbon dioxide evolution from the floor of three Minesota forest. Ecol. 49, 471-483. https://doi.org/10.2307/1934114
  24. Schlentner, R. E. and K. Van Cleve. 1985. Relationships between $CO_2$ evolution from soil, substrate temperature and substrate moisture in four mature forest types in interior Alaska. Can. J. For. Res. 15, 97-106. https://doi.org/10.1139/x85-018
  25. Schmel, D. S. 1995. Terrestrial ecosystems and the carbon cycle. Global Change Biol. 1, 77-91. https://doi.org/10.1111/j.1365-2486.1995.tb00008.x
  26. Son, Y. H. and H. W. Kim. 1996. Soil respiration in Pinus rigida and Larix leptolepis plantation. J. Kor. For. Soc. 85, 496-505.
  27. Striegl, R. G. and K. P. Wickland. 1998. Effects of a clear-cut harvest on soil respiration in a jack pine lichen woodland. Can. J. For. Res. 28, 534-539. https://doi.org/10.1139/cjfr-28-4-534
  28. Tans, P. P., I. Y. Fung, and T. Takahashi. 1990. Observational constraints on the global atmospheric $CO_2$ budget. Science 247, 1431-1438. https://doi.org/10.1126/science.247.4949.1431
  29. Vose, J. M., K. J. Elliott, D. W. Johnson, R. F. Walker, M. G., Johnson, and D. T. Tingey. 1995. Effects of elevated $CO_2$ and N fertilization on soil respiration from ponderosa pine (Pinus ponderosa) in open-top chambers. Can. J. For. Res. 25, 1243-1251. https://doi.org/10.1139/x95-137
  30. Witkamp, M. 1969. Cycles of temperature and carbon dioxide evolution from the forest floor. Ecol. 47, 492-494.

Cited by

  1. Effects of Tree Density Control on Carbon Dynamics in Young Pinus densiflora stands vol.105, pp.3, 2016, https://doi.org/10.14578/jkfs.2016.105.3.275