• 제목/요약/키워드: environmental modification

검색결과 682건 처리시간 0.023초

Effect of Various Phyto-extracts on Physico-chemical, Colour, and Oxidative Stability of Pork Frankfurters

  • Wagh, Rajesh V.;Chatli, Manish K.;Ruusunen, Marita;Puolanne, Eero;Ertbjerg, Per
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권8호
    • /
    • pp.1178-1186
    • /
    • 2015
  • Lipid oxidation, colour stability and physico-chemical quality of pork frankfurters with the incorporation of 0.30% sea buckthorn (SBT), 0.10% grape seed (GSE), 0.03% green tea (GTE), 0.12% fenugreek seed (FSE) and 0.10% Acacia catechu (ACE) were studied during 20 days of refrigerated aerobic storage. The SBT and ACE were identified as being the most effective antioxidants to retard lipid oxidation with the potency decreasing in the following order: SBT>ACE>GSE>GTE>FSE based on thiobarbituric acid reacting substances, peroxide value and free fatty acids. In all samples pH and $a_w$ decreased during storage period. The $L^*$ value of treated as well as control samples decreased over time while SBT and ACE exhibited an increased redness producing higher $a^*$ values than other treatments. However, GTE was more effective in increasing $b^*$ values than other treatments at the end of storage. The results suggest that functional plant-derived extracts can be valuable to the modification of frankfurter formulations for improved oxidative stability as well as quality characteristics.

P2O5로 표면 개질한 활성탄의 특성 및 Bisphenol A의 흡착능 (Characteristics of Surface Modified Activated Carbons Prepared Using P2O5 and Their Adsorptivity of Bisphenol A)

  • 이민규;김명찬;감상규
    • 한국환경과학회지
    • /
    • 제24권11호
    • /
    • pp.1463-1471
    • /
    • 2015
  • The surface modified activated carbons (SMACs) were prepared with various $P_2O_5$ concentrations using two activated carbons (ACs: waste citrus peel-based activated carbon and coconut-based activated carbon). The characteristics and adsorptivity of bisphenol A (one of phenolic endocrine disrupting chemicals) were compared between ACs and SMACs. The contents of C, H and N of SMACs were similar to those of ACs, but the content of $P_2O_5$ for the former increased greatly than for the latter, due to the impregnation of $P_2O_5$ into the pores. The specific surface area, total pore volume, average pore diameter and iodine adsorptivity for the former decreased due to the impregnation of $P_2O_5$ into the pores, compared to those for the latter. The adsorptivity of bisphenol A for the former were higher than that for the latter, although specific surface area, total pore volume, average pore diameter and iodine adsorptivity for the former were lower than those for the latter.

안전한 공간 조성을 위한 빛의 표현방안 연구 (A Study on Expressing the Methods of Light for Creating Safe Space)

  • 김명선;문정민
    • 한국주거학회논문집
    • /
    • 제27권3호
    • /
    • pp.39-46
    • /
    • 2016
  • On account of the increasing crime rates annually and the consequent rising anxiety, safety has become an important topic in the aspect of environmental formation to provide decent lives to urban dwellers. As a result, great emphasis has been placed in the importance of Crime Prevention through Environmental Design (CPTED), a design method which utilizes physical environmental design to prevent crime. The definition of CPTED encompasses the technological level of crime prevention as well as comprehensive environmental design which takes into consideration fear or terror in view of human recognition and emotion. However, the current application method of CPTED in Korea is still limited to the technical supplementation of facilities, such as CCTV and streetlight, and fragmental modification like village mural paintings. Moreover, the guideline for CPTED in Korea is only a theoretical adaptation of foreign books and does not offer sufficient studies for a practical design method that will improve the life of city dwellers. The purpose of this study is to examine design methods for safe environment construction in accordance with the changing concept of CPTED by understanding the characteristic of space and analyzing the how the methods of light are expressed. This study aims to provide basic material which will serve as a guideline in creating a safe environment in the future.

친환경 플라즈마 기술을 이용한 고품질 인쇄용지 제조 (제2보) - 표면처리된 원지를 이용한 도공지 제조 - (Manufacturing of High Quality Coated Paper using Environmental Friendly Plasma Technology(II) - Making coated paper using surface-treated base paper-)

  • 신동준;김선경;이용규
    • 펄프종이기술
    • /
    • 제44권1호
    • /
    • pp.31-36
    • /
    • 2012
  • In the previous study, the possibility of modifying the surface properties of base paper with plasma treatment was evaluated. It was shown that only the hydrophilic properties of the base paper surface was increased while there was no changes in physical and optical properties. Only the surface of the plasma treated side was modified. In this study, the effect of plasma treatment on binder migration was elucidated. The base paper was plasma treated with various voltage and then the plasma treated base papers were coated with varying coated weight. The surface strength of the coated paper (dry and wet pick) was increased with plasma treatment, which implies that the plasma treatment of base paper can inhibit the binder migration.

토양.지하수오염원 분류체계 구축방안: 2. 분류체계 구축 및 속성자료 활용방안 (Building a Classification Scheme of Soil and Groundwater Contamination Sources in Korea: 2. Construction of Classification System and Applications of Attribute Data)

  • 안정이;신경희;황상일
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제15권6호
    • /
    • pp.122-127
    • /
    • 2010
  • Constructing the national inventory that can be used as a tool to identify and assess existing or potential contamination is necessary for efficiently managing the soil and groundwater contamination. In order to start this construction, the first step is how we define and classify potential contamination sources of soil and groundwater. After selecting the basic classification model of contamination sources from developed countries, we suggested the classification and list of the potential contamination sources of soil and groundwater which are appropriate for specific conditions of South Korea. In addition, we investigated several databases to confirm the existence of available data sources and then examined established attribute data through chemical accident response information system (CARIS) and water information system (WIS) in National Institute of Environmental Research and mine geographic information system (MGIS) in Mine Reclamation Corporation. All sorts of attribute data in the existing databases can be utilized as significant assessment factors for determining the management priority of potential contamination sources in the future. Therefore, it is required the expanded investigation of additional database sources and the continual modification so that the classification system of potential contamination sources can be improved.

Use of Inner Ionomer Solution in Preparing Membrane-Electrode Assembly (MEA) for Fuel Cells and Its Characterization

  • Seo, Seok-Jun;Woo, Jung-Je;Yun, Sung-Hyun;Park, Jin-Soo;Moon, Seung-Hyeon
    • Korean Membrane Journal
    • /
    • 제10권1호
    • /
    • pp.46-52
    • /
    • 2008
  • Optimization of ionomer solution was conducted in order to improve the performance of MEAs in PEMPC. The interface between membrane and electrodes in MEAs is crucial region determining fuel cell performance as well as ORR reaction at cathode. Through the modification of Nafion ionomer content at the interface between membrane and electrodes, an optimal content was obtained with Nafion 115 membranes. Two times higher current density was obtained with the outer Nafion sprayed MEA compared with the non-sprayed one. In addition, the symmetrical impedance spectroscopy mode (SM) exhibited that the resistances of membrane area, proton hydration, and charge transfer decreased as the outer Nafion is sprayed. From the polarization curves and SM, the highest current density and the lowest resistance was obtained at the outer ionomer content of $0.15\;mg\;cm^{-2}$.

벤조피렌에 의한 p53 및 관련 단백질 변화 (Benzo[a]pyrene-induced Modification on p53 and Related Proteins)

  • 이순미;예상규;최진희
    • Environmental Analysis Health and Toxicology
    • /
    • 제20권1호
    • /
    • pp.23-28
    • /
    • 2005
  • PAH 위해성 평가의 생체지표 개발을 위하여, benzo[a]pyrene을 인체 간암 세포주인 HepG2세포에 처리하여 암 억제 단백질인 p53 및 관련 단백질의 발현 양상에 대하여 연구하였다. HepG2 세포의 생존력은 benzo[a]pyrene을 노출시킨 군에서 농도가 증가할수록 감소하였다. p53과 인산화 p53의 발현 양상은 benzo[a]pyrene 농도 의존적으로 증가하는 경향을 보였으며, 반면에 아세틸화 p53은 benzo[a]pyrene의 농도가 증가할수록 감소하는 경향을 나타내었다. 세포 주기 조절에 관련된 p21 단백질은 화학 물질 처리에 의해서 p53과 마찬가지로 증가하였으나, CdK4와 Rb 단백질의 발현에는 변화가 없었다. 상관분석 결과 Benzo[a]pyrene 노출, 세포 생존력, p53, 인산화 p53, p21이 서로 높은 상관성을 보였다. 본 연구의 결과는 p53 단백질의 축적이 benzo[a]pyrene 독성에 있어 매우 중요한 현상이며, 이는 선택적인 지표와 함께 p53 이 benzo[a]pyrene과 같은 PAH 계열의 물질의 위해성 평가를 위한 민감한 생체 지표로써 개발될 수 있음을 시사한다.

CPT-based p-y analysis for mono-piles in sands under static and cyclic loading conditions

  • Kim, Garam;Kyung, Doohyun;Park, Donggyu;Lee, Junhwan
    • Geomechanics and Engineering
    • /
    • 제9권3호
    • /
    • pp.313-328
    • /
    • 2015
  • In the present study, a CPT-based p-y analysis method was proposed for offshore mono-piles embedded in sands. Static and cyclic loading conditions were both taken into account for the proposed method. The continuous soil profiling capability of CPT was an important consideration for the proposed method, where detailed soil profile condition with depth can be readily incorporated into the analysis. The hyperbolic function was adopted to describe the non-linear p-y curves. For the proposed hyperbolic p-y relationship, the ultimate lateral soil resistance $p_u$ was given as a function of the cone resistance, which is directly introduced into the analysis as an input data. For cyclic loading condition, two different cyclic modification factors were considered and compared. Case examples were selected to check the validity of the proposed CPT-based method. Calculated lateral displacements and bending moments from the proposed method were in good agreement with measured results for lateral displacement and bending moment profiles. It was observed the accuracy of calculated results for the conventional approach was largely dependent on the selection of friction angle that is to be adopted into the analysis.

Exhaust emissions of a diesel engine using ethanol-in-palm oil/diesel microemulsion-based biofuels

  • Charoensaeng, Ampira;Khaodhiar, Sutha;Sabatini, David A.;Arpornpong, Noulkamol
    • Environmental Engineering Research
    • /
    • 제23권3호
    • /
    • pp.242-249
    • /
    • 2018
  • The use of palm oil and diesel blended with ethanol, known as a microemulsion biofuel, is gaining attention as an attractive renewable fuel for engines that may serve as a replacement for fossil-based fuels. The microemulsion biofuels can be formulated from the mixture of palm oil and diesel as the oil phase; ethanol as the polar phase; methyl oleate as the surfactant; alkanols as the cosurfactants. This study investigates the influence of the three cosurfactants on fuel consumption and exhaust gas emissions in a direct-injection (DI) diesel engine. The microemulsion biofuels along with neat diesel fuel, palm oil-diesel blends, and biodiesel-diesel blends were tested in a DI diesel engine at two engine loads without engine modification. The formulated microemulsion biofuels increased fuel consumption and gradually reduced the nitrogen oxides ($NO_x$) emissions and exhaust gas temperature; however, there was no significant difference in their carbon monoxide (CO) emissions when compared to those of diesel. Varying the carbon chain length of the cosurfactant demonstrated that the octanol-microemulsion fuel emitted lower CO and $NO_x$ emissions than the butanol- and decanol-microemulsion fuels. Thus, the microemulsion biofuels demonstrated competitive advantages as potential fuels for diesel engines because they reduced exhaust emissions.

Recovery of ammonia from wastewater by liquid-liquid membrane contactor: A review

  • Jang, Yoonmi;Lee, Wooram;Park, Jaebeom;Choi, Yongju
    • Membrane and Water Treatment
    • /
    • 제13권3호
    • /
    • pp.147-166
    • /
    • 2022
  • Liquid-liquid membrane contactor (LLMC), a device that exchanges dissolved gas molecules between the two sides of a hydrophobic membrane through membrane pores, can be employed to extract ammoniacal nitrogen from a feed solution, which is transported across the membrane and accumulated in a stripping solution. This LLMC process offers the promise of improving the sustainability of the global nitrogen cycle by cost-effectively recovering ammonia from wastewater. Despite recent technological advances in LLMC processes, a comprehensive review of their feasibility for ammonia recovery is rarely found in the literature. Our paper aims to close this knowledge gap, and in addition to analyze the challenges and provide potential solutions for improvement. We begin with discussions on the operational principles of the LLMC process for ammonia recovery and membrane types and membrane configurations commonly used in the process. We then assess the performance of the process by reviewing publications that demonstrate its practical application. Challenges involved in the implementation of the LLMC process, such as membrane fouling, membrane wetting, and chemical requirements, are presented, along with discussions on potential strategies to address each. These strategies, including membrane modification, hybrid process design, and process optimization based on cost-benefit analysis, guide the reader to identify key areas of future research and development.