• Title/Summary/Keyword: environmental degree

Search Result 2,752, Processing Time 0.032 seconds

Relations between the Emotional Labor and Depression Symptoms of Female Workers in Cosmetics Sales - With a focus on spiritual resilience - (화장품 판매직 여성근로자의 감정노동과 우울증상과의 관련성 -정신적 회복탄력성을 중심으로-)

  • Jung, Myung-Hee;Kim, Hyun-Joo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • The purposes of this study were to examine the depression level of sales workers at a cosmetics company in South Korea and investigate the effects of emotional labor, job stress, and resilience on their depression symptoms. A structured questionnaire was distributed to 189 workers at the cosmetics company to assess their general characteristics, diseases diagnosed by the doctor, depression, emotional labor, job stress, and resilience. Univariate analysis and multiple logistic regression analysis was conducted to examine connections among depression symptoms, emotional labor, job stress, and resilience. The findings show that the depression symptom rate of the cosmetics sales workers was 32.3%. The multiple logistic regression analysis results of the high risk group in depression symptoms show that depression had significant relations with resilience(OR : 3.84, CI : 1.68-8.77), diseases diagnosed by the doctor(OR : 3.82, CI : 1.73-8.47), emotional disharmony(OR : 2.51, CI : 1.06-5.96), and job demand(OR : 2.12, CI : 0.93-4.85). The low risk group of emotional labor was corrected in age, doctor's diagnosis, and job stress with the reference value to analyze connections with depression symptoms according to the degree of resilience. The analysis results show that depression symptoms increased by 2.35 times(CI : 0.73-7.53) when they had high emotional labor and good resilience, by 3.74 times(CI : 1.17-11.97) when they had low emotional labor and bad resilience, and by 10.39 times(CI : 3.34-32.28) when they had high emotional labor and bad resilience. These findings raise a need to run a program to increase resilience, reduce emotional disharmony through emotional labor management, and take health management measures to control physical illness and lower job stress so that cosmetics sales workers can manage their depression symptoms.

Structural Behavior of Mixed $LiMn_2O_4-LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ Cathode in Li-ion Cells during Electrochemical Cycling

  • Yun, Won-Seop;Lee, Sang-U
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.5-5
    • /
    • 2011
  • The research and development of hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) are intensified due to the energy crisis and environmental concerns. In order to meet the challenging requirements of powering HEV, PHEV and EV, the current lithium battery technology needs to be significantly improved in terms of the cost, safety, power and energy density, as well as the calendar and cycle life. One new technology being developed is the utilization of composite cathode by mixing two different types of insertion compounds [e.g., spinel $LiMn_2O_4$ and layered $LiMO_2$ (M=Ni, Co, and Mn)]. Recently, some studies on mixing two different types of cathode materials to make a composite cathode have been reported, which were aimed at reducing cost and improving self-discharge. Numata et al. reported that when stored in a sealed can together with electrolyte at $80^{\circ}C$ for 10 days, the concentrations of both HF and $Mn^{2+}$ were lower in the can containing $LiMn_2O_4$ blended with $LiNi_{0.8}Co_{0.2}O_2$ than that containing $LiMn_2O_4$ only. That reports clearly showed that this blending technique can prevent the decline in capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and related structural phase transitions for these composite cathodes. In this presentation, we will report our in situ x-ray diffraction studies on this mixed composite cathode material during charge-discharge cycling. The mixed cathodes were incorporated into in situ XRD cells with a Li foil anode, a Celgard separator, and a 1M $LiPF_6$ electrolyte in a 1 : 1 EC : DMC solvent (LP 30 from EM Industries, Inc.). For in situ XRD cell, Mylar windows were used as has been described in detail elsewhere. All of these in situ XRD spectra were collected on beam line X18A at National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory using two different detectors. One is a conventional scintillation detector with data collection at 0.02 degree in two theta angle for each step. The other is a wide angle position sensitive detector (PSD). The wavelengths used were 1.1950 ${\AA}$ for the scintillation detector and 0.9999 A for the PSD. The newly installed PSD at beam line X18A of NSLS can collect XRD patterns as short as a few minutes covering $90^{\circ}$ of two theta angles simultaneously with good signal to noise ratio. It significantly reduced the data collection time for each scan, giving us a great advantage in studying the phase transition in real time. The two theta angles of all the XRD spectra presented in this paper have been recalculated and converted to corresponding angles for ${\lambda}=1.54\;{\AA}$, which is the wavelength of conventional x-ray tube source with Cu-$k{\alpha}$ radiation, for easy comparison with data in other literatures. The structural changes of the composite cathode made by mixing spinel $LiMn_2O_4$ and layered $Li-Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ in 1 : 1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ~5.2 V vs. $Li/Li^+$, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component only. When the cell voltage reaches at ~4.0 V vs. $Li/Li^+$, lithium extraction from the spinel $LiMn_2O_4$ component starts and becomes the major contributor for the cell capacity due to the higher rate capability of $LiMn_2O_4$. When the voltage passed 4.3 V, the major structural changes are from the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, while the $LiMn_2O_4$ component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel $LiMn_2O_4$ component, with much less changes in the layered $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research. More detailed discussion will be presented at the meeting.

  • PDF

Establishment of Application Level for the Proper Use of Organic Materials as the Carbonaceous Amendments in the Greenhouse Soil (시설재배지 유기물자원 적정 시용기준 설정)

  • Kang, Bo-Goo;Lee, Sang-Young;Lim, Sang-Cheol;Kim, Young-Sang;Hong, Soon-Dal;Chung, Keun-Yook;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.248-255
    • /
    • 2011
  • For the environmental friendly soil management on the cultivation of crops in the greenhouse, organic materials, such as the by product-fertilizer derived from livestock manure, rice straw, mushroom media, rice hulls, wood sawdust, and cocopeat, were used as carbon sources adjusting the ratio of carbon to nitrogen to 10, 20, and 30 based on the inorganic soil N. In each C/N ratio of greenhouse soil, watermelon was cultivated in the greenhouse as crop for experiment for the spring and summer of the year and the experimental results were summarized as follows. The concentration of T-C in the organic materials applied were between $289{\sim}429g\;kg^{-1}$, In the C/N ratio of 10, using watermelon as the crop cultivated during the second half of the year in the greenhouse soil, the $NO_3$-N and EC were reduced by 21 to 37%, and 26 to 33%, respectively, except the by product-fertilizer from livestock manure, compared to the soil $NO_3$-N and EC used in the experiment. After the watermelon was cultivated in soils that C/N ratios were controlled as 10, 20, and 30 with wood sawdust adding as carbon sources in the three soils with the different EC values, EC values of the soils were reduced by 33, 42, and 39%, respectively, compared to the soil EC used in the experiment. The weight of watermelon was 10.1-13.4 kg per one unit, and, of the three soils with different EC values. In the soils with three different EC values controlled at C/N ratio of 20, the weight of watermelon was good. The degree of sugar of watermelon were 11.8 to 12.3 Brix, which means that the difference between the treatments was not significant. In conclusion, the C/N ratio of 20 controlled by the proper supply of organic materials according to the representative EC values shown in the greenhouse soils was optimal condition enough to maintain the soil management for the organic culture with the proper nutrient cycling.

Relative Magma Formation Temperatures of the Phanerozoic Granitoids in South Korea Estimated by Zircon Saturated Temperature (저콘 포화온도로 추정한 남한 현생이언 화강암의 상대적인 마그마 생성온도)

  • Sangong Hee;Kwon Sung-Tack;Cho Deung-Ryong;Jwa Yong-Joo
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.2 s.40
    • /
    • pp.83-92
    • /
    • 2005
  • It has recently been proposed that granites can be divided into hot and cold ones by absence and presence of inherited zircon, respectively, which is closely related to zircon saturation temperature. The Phanerozoic granites in South Korea are divided into high- and low-Zr groups in a $SiO_2-Zr$ diagram, which appears to be related to their intrusive age. Most Triassic-Jurassic granites belong to low-Zr group, whereas most Cretaceous-Early Tertiary granites belong to the high-Zr group with the exception of geographically distinct Masan and Jinhae granites that belong low-Zr group. Calculated zircon saturation temperatures using major elements and Zr contents indicate that the Cretaceous-Early Tertiary granites $(608-834^{\circ}C,\;average\; 782\pm31^{\circ}C)$ except for the Masan and Jinhae granites $(average\;759\pm16^{\circ}C)$ show higher temperature than the Triassic-Jurassic granites $(642-824^{\circ}C,\;average\;756\pm31^{\circ}C)$. U-Pb zircon isotope data of the Triassic-Jurassic granites reported so far define discordia in a concordia diagram, which indicates presence of inherited zircon and agrees with their low zircon saturation temperatures. So the Triassic-Jurassic granites appear to belong to cold granite. On the other hand, presence or absence of inherited zircon has not been known for the Cretaceous-Early Tertiary granites with relatively high zircon saturation temperature, so that their classification into hot or cold granite awaits further study. Nevertheless, the Creatceous-Early Tertiary granites may have formed at higher temperature than the Triassic-Jurassic granites, since zircon saturation temperature reflects formation temperature of magma to a certain degree.

Lithospheric Mantle beneath the Korean Peninsula: Implications from Peridotite Xenoliths in Alkali Basalts (우리나라 상부암석권 맨틀: 페리도타이트 포획암으로부터의 고찰)

  • Choi, Sung-Hi
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.235-247
    • /
    • 2012
  • Peridotite xenoliths hosted by alkali basalts from South Korea occur in Baengnyeong Island, Jeju Island, Boeun, Asan, Pyeongtaek and Ganseong areas. K-Ar whole-rock ages of the basaltic rocks range from 0.1 to 18.9 Ma. The peridotites are dominantly lherzolites and magnesian harzburgites, and the constituent minerals are Fo-rich olivine ($Fo_{88.4-92.0}$), En-rich orthopyroxene, Di-rich clinopyroxene, and Cr-rich spinel (Cr# = 7.8-53.6). Hydrous minerals, such as pargasite and phlogopite, or garnet have not been reported yet. The Korean peridotites are residues after variable degree of partial melting (up to 26%) and melt extraction from fertile MORB mantle. However, some samples (usually refractory harzburgites) exhibit metasomatic enrichment of the highly incompatible elements, such as LREE. Equilibration temperatures estimated using two-pyroxene geothermometry range from ca. 850 to $1050^{\circ}C$. Sr and Nd isotopic compositions in clinopyroxene separates from the Korean peridotites show trends between depleted MORB-like mantle (DMM) and bulk silicate earth (BSE), which can be explained by secondary metasomatic overprinting of a precursor time-integrated depleted mantle. The Korean peridotite clinopyroxenes define mixing trends between DMM and EM2 end members on Sr-Pb and Nd-Pb isotopic correlation diagrams, without any corresponding changes in the basement. This is contrary to what we observe in late Cenozoic intraplate volcanism in East Asia which shows two distinct mantle sources such as a DMM-EM1 array for NE China including Baengnyeong Island and a DMM-EM2 array for Southeast Asia including Jeju Island. This observation suggests the existence of large-scale two distinct mantle domains in the shallow asthenosphere beneath East Asia. The Re-Os model ages on Korean peridotites indicate that they have been isolated from convecting mantle between ca. 1.8 and 1.9 Ga.

A Study on the Level of Air Pollution and Noise in Pusan Area (부산의 지역별 대기오염과 소음정도에 관한 조사연구)

  • Cho, G.I.;Moon, D.H.;Lee, J.T.;Sin, H.R.;Kim, Y.W.;Park, H.J.;Pae, K.T.;Lee, C.U.
    • Journal of Preventive Medicine and Public Health
    • /
    • v.23 no.4 s.32
    • /
    • pp.391-403
    • /
    • 1990
  • In order to assess the degree of atmospheric pollution and noise and to contribute the health improvement of residents in Pusan, the author measured the levels of CO, $SO_2,\;NO_2$, TSP, HCHO and noise in 8 areas (industrial, residential and park areas) from January to March in 1990. The results were as follows : 1. Sasang industrial area was significantly higher($2.85{\pm}0.84ppm$) in the average concentration of CO than other areas. However, there no areas to affect the human body in terms of CO concentration. 2. In general, industrial area was significantly higher ($0.134{\pm}0.084ppm$) in the average concentration of $SO_2$ than other areas, and it was the lowest ($0.009{\pm}0.005ppm$) in the Namchon-dong area. 3. Industrial ($0.033{\pm}0.009ppm$) and residential area ($0.029{\pm}0.004ppm$) were significantly higher in the average concentration of $NO_2$ than Park area ($0.009{\pm}0.001ppm$). However, there were no areas to affect the human body in terms of $NO_2$ concentration. 4. Sasang industrial area was the highest ($580.4{\pm}415.26{\mu}g/m^3$) at the average concentration of TSP and Hae-Un Dae area was the lowest ($97.22{\pm}37.86{\mu}g/m^3$). But TSP concentration showed the level to affect the human body in most areas. 5. Industrial area was significantly higher ($2.25{\pm}1.15ppb$) in the average concentration of HCHO than residential ($1.13{\pm}0.25ppb$) and park area ($1.33{\pm}0.20ppb$). 6. Industrial area was significantly higher ($77.28{\pm}6.92dB(A)$) in the level of noise than residential ($65.77{\pm}3.76dB(A)$) and park area ($64.65{\pm}5.25dB(A)$). In comparison with regional Standard Noise Level, howeverm the average noise level of residential and park area was higher than that of the Standard. In general, the level of pollution of industrial complex areas was relatively higher than those of residential and park areas. Among the industrial areas, sasang area was worst in most items. Both $SO_2$ and TSP showed the level to affect the human body in most of studied areas. It is necessary to install a new Air Quality Standard for HCHO to screen our environmental pollution.

  • PDF

Spatial Distribution and Dynamics of Vegetation on a Gravel Bar: Case Study in the Bangtae Stream (자갈 하중주에서 식생의 공간 분포 및 동태: 방태천의 사례)

  • Pee, Jung-Hun;Kim, Hye-Soo;Kim, Gyung-Soon;Oh, Woo-Seok;Koo, Bon-Yoel;Lee, Chang-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.2
    • /
    • pp.215-224
    • /
    • 2013
  • We clarified the background for establishment of vegetation by comparing the spatial distribution maps of vegetation and substrate on a gravel bar in the Bangtae stream located on Inje-gun of Gangwon-do, the central eastern Korea. The total vegetation coverage was higher in the interior and lower in the marginal parts of the gravel bar. Spatial distribution of vegetation on the longitudinal section of the gravel bar tended to be arranged in the order of shrub, subtree, and tree dominated vegetation types from the front (upstream) toward the rear (downstream) parts. Coverage of the herbaceous plants was higher in the central and rear parts and lower in the front and right parts of the gravel bar. Vegetation height was higher in the rear part and became lowered as move toward the front part. Substrate was distributed in the order of boulder, gravel, sand, and boulder from the front toward the rear parts. Ordination of stands based on vegetation data was arranged in the order of annual plant, perennial herb, shrub, and tree dominated vegetation as move from the right to the left parts on the axis I. Species richness was higher in the order of Pinus densiflora community, Phragmites japonica community, Salix gracilistyla community, Fraxinus rhynchophylla community, annual plant dominated vegetation, and Prunus padus for. padus community based on the species rank-abundance curve. The order based on the Shannon's index was some different; diversity of Phragmites japonica community and Salix gracilistyla community, which showed higher dominance degree, were low differently from species richness. In conclusion, it was evaluated that the gravel bar newly established toward the upstream and vegetation dynamics of the gravel bar seemed to follow ecosystem mechanisms of succession. As were shown in the above results, the Bangtae stream corresponded to the upstream and thereby particle size of substrate was big. Therefore, they move by rolling and are accumulated for the upstream. Vegetation types were arranged in the order of woodland, shrub-land and grassland from the rear toward the front parts of the gravel bar and thereby reflected the formation process of the bar. However, the gravel bar is disturbed frequently by not only the running water but also the suspended sand as the dynamic space. Such disturbances cause habitat diversity and consequently led to high biodiversity.

Modeling and Validation of Population Dynamics of the American Serpentine Leafminer (Liriomyza trifolii) Using Leaf Surface Temperatures of Greenhouses Cherry Tomatoes (방울토마토에서 잎 표면온도를 적용한 아메리카잎굴파리(Liriomyza trifolii) 개체군 밀도변동 모형작성 및 평가)

  • Park, Jung-Joon;Mo, Hyoung-Ho;Lee, Doo-Hyung;Shin, Key-Il;Cho, Ki-Jong
    • Korean journal of applied entomology
    • /
    • v.51 no.3
    • /
    • pp.235-243
    • /
    • 2012
  • Population dynamics of the American serpentine leafminer, Liriomyza trifolii (Burgess), were observed and modeled in order to compare the effects of air and tomato leaf temperatures inside a greenhouse using DYMEX model builder and simulator (pre-programed module based simulation programs developed by CSIRO, Australia). The DYMEX model simulator consisted of a series of modules with the parameters of temperature dependent development and oviposition models of L. trifolii were incorporated from pre-published data. Leaf surface temperatures of cherry tomato leaves (cv. 'Koko') were monitored according to three tomato plant positions (top, > 1.8 m above the ground level; middle, 0.9 - 1.2 m; bottom, 0.3 - 0.5 m) using an infrared temperature gun. Air temperature was monitored at the same three positions using a self-contained temperature logger. Data sets for the observed air temperature and average leaf surface temperatures were collected (top and bottom surfaces), and incorporated into the DYMEX simulator in order to compare the effects of air and leaf surface temperature on the population dynamics of L. trifolii. The initial population consisted of 50 eggs, which were laid by five female L. trifolii in early June. The number of L. trifolii larvae was counted by visual inspection of the tomato plants in order to verify the performance of DYMEX simulation. The egg, pupa, and adult stage of L. trifolii could not be counted due to its infeasible of visual inspection. A significant positive correlation between the observed and the predicted numbers of larvae was found when the leaf surface temperatures were incorporated into the DYMEX simulation (r = 0.97, p < 0.01), but no significant positive correlation was observed with air temperatures(r = 0.40, p = 0.18). This study demonstrated that the population dynamics of L. trifolii was affected greatly by the leaf temperatures, though to little discernible degree by the air temperatures, and thus the leaf surface temperature should be for a consideration in the management of L. trifolii within cherry tomato greenhouses.

Development of Smart Packaging for Cream Type Cosmetic (크림 제형 화장품용 스마트 패키징 기술 개발)

  • Jeon, Sooyeon;Moon, Byounggeoun;Oh, Jaeyoung;Kang, Hosang;Jang, Geun;Lee, Kisung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.25 no.3
    • /
    • pp.79-87
    • /
    • 2019
  • The degree of cosmetic's oxidation depends on the storage conditions and external conditions when using the product. The microbial contamination and oxygen exposure often results in the quality deterioration of cosmetics. In addition, the problem is that consumers often use cream-type cosmetics, which have short expiration period (6-12 months), even after the product is expired. When using the deteriorated cosmetics, it can be fatal to consumers' safety including some symptoms such as folliculitis, rashes, edema, and dermatitis. Therefore, it is necessary to develop sealed smart packaging for cosmetics to prevent the deterioration of cosmetics and improve consumer safety. In this study, we have developed smart packaging design for cosmetics that can measure the surrounding environment and expiration date for the cosmetics in the real time. In addition, the smart packaging includes sensor, which are linked to the mobile application. Users can find out the measurement results through the application. Also, the packaging design and functions were set up based on the survey results by the user and feasible model can be produced based on user choice. The measurement in the three environment has been done after manufactured the sensor, PCB, and mobile application. As a result, it works normally within a certain range under all three environmental conditions. It is believed that the information on expiration dates and storage environment can be efficiently delivered to the consumers through developed cosmetics smart packaging and applications. The development of UI/UX design for consumer is further studied. The UX/UI design of the application plays an essential role in achieving this goal through the commercialization the cosmetic products in the wide range.

COMPARISON OF FLUX AND RESIDENT CONCENTRATION BREAKTHROUGH CURVES IN STRUCTURED SOIL COLUMNS (구조토양에서의 침출수와 잔존수농도의 파과곡선에 관한 비교연구)

  • Kim, Dong-Ju
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.2
    • /
    • pp.81-94
    • /
    • 1997
  • In many solute transport studies, either flux or resident concentration has been used. Choice of the concentration mode was dependent on the monitoring device in solute displacement experiments. It has been accepted that no priority exists in the selection of concentration mode in the study of solute transport. It would be questionable, however, to accept the equivalency in the solute transport parameters between flux and resident concentrations in structured soils exhibiting preferential movement of solute. In this study, we investigate how they differ in the monitored breakthrough curves (BTCs) and transport parameters for a given boundary and flow condition by performing solute displacement experiments on a number of undisturbed soil columns. Both flux and resident concentrations have been simultaneously obtained by monitoring the effluent and resistance of the horizontally-positioned TDR probes. Two different solute transport models namely, convection-dispersion equation (CDE) and convective lognormal transfer function (CLT) models, were fitted to the observed breakthrough data in order to quantify the difference between two concentration modes. The study reveals that soil columns having relatively high flux densities exhibited great differences in the degree of peak concentration and travel time of peak between flux and resident concentrations. The peak concentration in flux mode was several times higher than that in resident one. Accordingly, the estimated parameters of flux mode differed greatly from those of resident mode and the difference was more pronounced in CDE than CLT model. Especially in CDE model, the parameters of flux mode were much higher than those of resident mode. This was mainly due to the bypassing of solute through soil macropores and failure of the equilibrium CDE model to adequate description of solute transport in studied soils. In the domain of the relationship between the ratio of hydrodynamic dispersion to molecular diffusion and the peclet number, both concentrations fall on a zone of predominant mechanical dispersion. However, it appears that more molecular diffusion contributes to the solute spreading in the matrix region than the macropore region due to the nonliearity present in the pore water velocity and dispersion coefficient relationship.

  • PDF