• 제목/요약/키워드: environmental VOCs

검색결과 654건 처리시간 0.025초

자동차의 배기관 VOCs 배출 특성 (Exhaust VOCs Emission Characteristics from Motor Vehicles)

  • 유영숙;류정호;한종수;김선문;임철수;김대욱;이동민;이중구;엄명도;김종춘
    • 한국대기환경학회지
    • /
    • 제24권3호
    • /
    • pp.275-283
    • /
    • 2008
  • Since mobile source is a major source of VOCs, quantifying emissions from motor vehicles is an important factor to control VOCs in atmosphere. In this study, in order to evaluate tailpipe VOCs emissions from motor vehicles, mass emissions of non-methane volatile organic compounds from 45 vehicles were determined. Measurements were made on a chassis dynamometer using CVS-75 mode and speed specific drive modes. Target VOCs are 53 compounds determined as the volatile ozone precursors. The individual VOCs composition of vehicle emission and emission rates were also determined. In case of gasoline vehicles, VOCs emission from over 80,000 km vehicles were about 46% larger than less 80,000 km vehicles. The difference in benzene and toluene according to driving mileage was 44% and 26% respectively. The composition of VOCs were different by fuel type. The order of VOCs composition was paraffins>aromatics>olefins in gasoline vehicle emissions, paraffins>olefins>aromatics in light duty diesel vehicle emissions. The VOCs emissions were decreased as vehicle speed increasing. These results will be used to calculate total VOCs emissions from automobiles in the future.

제올라이트 흡착농축 및 촉매연소를 이용한 인쇄공정에서 발생되는 저농도 대풍량 VOCs 가스 제거 (A Treatment of Low-leveled High-volume VOCs Emitted from Printing Process Using Concentrator with Zeolite Adsorptive Honey Rotor and Catalytic Combustion System)

  • 박찬규;유남종;최보경;고광백
    • 한국환경과학회지
    • /
    • 제18권3호
    • /
    • pp.283-288
    • /
    • 2009
  • This is a study on the volatile organic compounds(VOCs) concentrator with zeolite adsorptive honey rotor and catalytic combustion system for abating VOCs emitted from printing industry. VOCs emitted from the printing industry is mainly caused by organic solvent of printing ink. The content of organic solvents in printing ink varies from 40% to 75% and its content in the gravure ink is higher than that in any other ink. The average concentrations of each VOCs are 139 ppm for toluene, 152.1 ppm for MEK, 256.9 ppm for methanol and 42.9 ppm for isopropyl alcohol. We used zeolite honeycomb for absorbent of VOCs concentrator and palladium for catalyst combustion system. This system abated over 96% of emitted total VOCs, 98% of toluene, 100% of MEK, 92% of methanol and, 100% of isopropyl alcohol. It is concluded that the low-leveled high-volume VOCs emitted from printing process were removed almost by concentrator with zeolite adsorptive honey rotor and catalytic combustion system.

광주지역 산업단지 도장·인쇄시설의 휘발성유기화합물 배출 특성 평가 (Estimation and Analysis of VOCs Emissions from Painting and Printing Facilities in Industrial Complexes of Gwangju)

  • 김승호;서동주;김하람;박진환;이기원;배석진;송형명
    • 한국환경과학회지
    • /
    • 제29권5호
    • /
    • pp.479-494
    • /
    • 2020
  • This study analyses the characteristics of volatile organic compounds (VOCs) emissions from the painting and printing facilities, as well as ambient VOCs at industrial complexes in Gwangju. The major components of VOCs emissions from painting facilities were toluene, acetone, 2-butanone, ethyl acetate, ethyl benzene, o-xylene and m,p-xylene. The printing facilities mostly emitted ethyl acetate, 2-butanone, acetone and toluene. Aromatics (49.9%) and oxygenated VOCs (43.6%) were dominant in painting facilities, while oxygenated VOCs (92.7%) were the largest group in printing facilities. The total hydrocarbon concentration (THC) in printing facilities was approximately six times higher than in the painting facilities. The painting and printing facilities use many solvents. Their THC concentrations differed considerably depending on the type of prevention facilities. To reduce THC, it is necessary to improve the prevention facilities and operating conditions. The dominant species of ambient VOCs in industrial complexes were investigated with toluene, ethyl acetate, 2-butanone, ethyl benzene, m,p-xylene, butyl acetate, o-xylene, hexane and acetone. Factor analysis of ambient VOCs showed that the main sources of the VOCs were organic solvents used in painting, coating, and printing, as well as automobile emissions.

PCA와 ANN을 이용한 VOC 측정기기 개발 (The Development of VOC Measurement System Uging PCA & ANN)

  • 이장훈;권혁구;박승호;김동진;홍철호
    • Environmental Analysis Health and Toxicology
    • /
    • 제19권2호
    • /
    • pp.161-167
    • /
    • 2004
  • Air quality monitoring is a primary activity for industrial and social environment. The government identifies the pollutants that each industry must monitor. Especially, the VOCs (Volatile Organic Compounds), which are very harmful to human body and environment atmosphere, should be controlled under the government policy. However, the VOCs, which have not been confirmed in emission sources are very difficult to monitor. It is needed to develop the monitoring system that allow the continuous and in situ measurement of VOCs mixture in different environmental matrices. Gas chromatography and mass spectrometry are the most prevalent current techniques among those available for the analysis of VOCs. But, they need a large size analytical instrument, which costs a great deal for purchase and operation. In addition, it has some limitations for realtime environmental monitoring such as location problems and slow processing time. Recently, several companies have commercialized a portable VOCs measurement systems, which cannot classify various kinds of VOCs but total quantities. We have developed a VOCs measurement system, which recognizes various kinds and quantities of VOCs, such as benzene, toluene, and xylene (BTX). Also, it can be used as a stand- alone type and/or fixed type in the vehicle with rack for real -time environmental monitoring.

소형승합차량 및 RV차량의 휘발성 유기 화합물 배출특성 변화에 관한 연구 (A Study on the VOCs Emission Characteristics by the Light Duty Diesel and LPG Fueled Vehicles)

  • 엄명도;류정호;한종수;유영숙;김대욱;김종춘
    • 한국자동차공학회논문집
    • /
    • 제16권1호
    • /
    • pp.8-13
    • /
    • 2008
  • Emissions from automobiles have long been considered a prime source of pollutants involved in smog formation and ozone production. Especially VOCs are associated with serious environmental problems such as photo-chemical smog as well as human health effects. Since motor vehicles are a major source of VOCs, estimating of emission from mobile source is the most important factor to control VOCs. VOCs are emitted from various pollution like motor vehicles, mobile and stationary source that has characteristics of toxicity, cancer-causing, bio-accumulation, durability in air and diffusion can exert a bad influence upon human health and environment. However we don't have any standard or regulation about VOCs emissions. This study is summarized as VOCs emission characteristics from in-use light-duty diesel and LPG fueled vehicles. The vehicle exhaust-gas test mode is CVS cycle and nier-10 cycles that developed on EPA and National Institute of Environmental Research. TO-14 method (Toxic Organic) was chosen for VOCs analysis from EPA in USA. This study results will be useful when make a emission factor and rule making of emission standard about domestic VOCs emission for the improve to air condition.

대기 중 휘발성유기화합물질 및 알데하이드의 분석 신뢰도 향상에 관한 고찰 (Study on Improvement in Reliability of Analysis for VOCs and Aldehydes)

  • 이민도;이상욱;임용재;김영미;김소영;문광주;한진석;정일록
    • 한국대기환경학회지
    • /
    • 제22권4호
    • /
    • pp.468-476
    • /
    • 2006
  • Hazardous air pollutants (HAPs) have high toxicity and bioaccurnulation potentials into human body even inbsmall amount (levels of ng/$m^3$). As the levels of HAPs might be controversial, it has been become essential to establish the analysis method for correct results. In this study, various analysis methods of VOCs and Aldehydes were compared in order to select the proper methods in our condition. Sampling and analysis method of VOCs were followed to EPA TO-14a and TO-17. VOCs were collected in absorption tube and separated by thermal desorption unit then analyzed by GC/MSD. Aldehydes were sampled in DNPH-cartridge and extracted into solution then analyzed by HPLC as the same condition of EPA TO-13a. This study also shows the results of QA/QC system of selected methods. Some experiments could be improving the data assurance blank test, calibration check, repetition precision check, the determination of detection limit and reproducibility of the retention time. Precisions of VOCs and aldehydes were ranged in 2$\sim$9% and 1$\sim$4% RSD, respectively. Recovery rate of VOCs showed variable ranges from 60 to 133.5%. MDL of VOCs and aldehydes were 0.044$\sim$0.284 ppb and 0.14$\sim$1.02 ng, respectively.

여수 유류유출사고 방제작업자의 건강영향평가 (Health Effect Assessment on Cleanup Workers of an Oil Spill in Yeosu)

  • 김근배;강택신;윤미라;조혜정;주영경;유승도;이보은
    • 한국환경보건학회지
    • /
    • 제42권6호
    • /
    • pp.385-395
    • /
    • 2016
  • Objectives: The aim of this study was to assess exposure to VOCs and PAHs and the health effects on volunteers who participated in an oil spill cleanup in Yeosu. Methods: Atmospheric VOCs were evaluated in the vicinity of the accident site and questionnaire surveys were conducted to identify personal characteristics and acute health symptoms of clean-up workers seven days after the accident. The levels of metabolites of VOCs (t,t-MA, HA, PGA, MA, MHA) and PAHs (2-NAP, 1-OHP, 2-HF, 1-HPH), oxidative stress markers (TABARS, 8-OHdG) in the urine of workers were analyzed. Their correlation was determined by multiple regression analysis with SAS ver. 9.4. Results: Although the concentration of atmospheric VOCs in the residential areas were low at the time of survey, the levels of VOCs and PAHs metabolites in clean-up workers were higher than those in the control group after clean-up activities. The levels of urinary VOC and PAH metabolites were significantly increased after clean-up compared to those measured before participation. The thiobarbituric acid reactive substance (TBARS) concentrations were also increased and showed significant correlations with those of metabolites of benzene. Conclusion: This study shows that oil spill clean-up activities affect exposure to VOCs and PAHs and the health of clean-up workers. The results suggest the need for check-ups of participants in oil spill cleaning work.

A Study on the Development of VOCs Detector

  • Suh, Jung-Ho;Suh, Myung-Gyo;Hong, Won-Hak;Lee, Young-Sei
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2004년도 International Conference Global Environmental Problems and their Health Consequences
    • /
    • pp.139-141
    • /
    • 2004
  • Emission of volatile organic compounds (VOCs) are one of the popular issues of air pollution in Korea, especially in Ulsan city, where much chemical plants are located. It is necessary to detect the VOCs precisely in order to control the air pollution during the plant operation. In general, to examine the concentration of VOCs, gas chromatography (GC) is used. However, most plant operators are using the easy operating handy VOCs detector, which is imported, because GC is difficult to treat and the installation price is high although it is very useful equipment. Therefore, the development of the VOCs detector becomes one of the urgent issues. In this study, sensing characteristics of selected VOCs for the development of VOCs detector was investigated. Semiconductor sensor and several VOCs such as aliphatic, aromatic, and non-homogeneous hydrocarbons were used for the experiment. Through the various experiments, sensor used in the experiment has shown high linearity and sensitivity for most VOCs in the range of 1 -500 ppm concentration.

  • PDF

광양만 해수의 휘발성 유기화합물에 대한 시.공간적 분포 (Temporal and Spatial Distribution of VOCs in Seawater of Kwangyang Bay)

  • 주현수;이우범;박종천
    • 환경생물
    • /
    • 제17권4호
    • /
    • pp.513-519
    • /
    • 1999
  • 광양만 해수를 대상으로 총 17개의 조사정점을 선정, 1996년 7월부터 1997년 4월까지 계절별로 19종류의 VOCs를 분석.조사하였다. 조사대상 VOCs 중 methylene chloride, tetrachloromethane, 1, 1, 1-trichloroethane, trichloroethane, 1, 1, 1, 2-tetrachloroethane, trichloroethylene, bromoethane, dibromoethane, bromobenzene, 1-ethyl-3-methylbenzene등 총 10개 항목은 전체 조사지점 및 조사 시기 동안에 검출되지 않았으며, chloroform, 1, 2-dichloroethane, ethylbenzene, benzene, toluene, m, p-xylene, methylethylketone, styrene, hexane 등의 조사항목은 소량의 범위에서 조사시기와 정점을 달리하여 검출되었다. 특히 chloroform과 toluene은 0.6~49.9$\mu$g/1, 0.42~48.3$\mu$g/1로서 높은 농도의 범위를 나타내었으며, 검출빈도도 다른 조사 대상 VOCs에 비해 높은 것으로 조사되었다. 이화학적 환경요인과 VOCs와의 상관관계에서 toluene만이 수온(r=-0.524), pH(r=0.319)가 비교적 높은 상관성을 보였으며 나머지 항목은 매우 낮은 상관성을 보였다. VOCs 상호간의 상관성에서 benzene의 경우 toluene, m, p-xylene, ethylbenzene과 높은 상관계수(r=0.549~0.662)를 보였다. 이러한 결과는 광양만에서 VOCs의 배출이 같은 시기에 이루어지고 있음을 시사하는 것으로 추측된다.

  • PDF

KOH activated pine tree needle leaves biochar as effective sorbent for VOCs in water

  • Theoneste, Nshirirungu;Kim, Moon Hyun;Solis, Kurt Louis;Park, Minoh;Hong, Yongseok
    • Membrane and Water Treatment
    • /
    • 제9권5호
    • /
    • pp.293-300
    • /
    • 2018
  • The removal of volatile organic compounds (VOCs) from water using KOH-activated pine tree needle leaves biochar is considered a cost effective and efficient process. In this study, pine tree needle leaves were mixed with 0, 50, 100 and 200% (KOH weight/feedstock weight) of KOH, respectively. Then, the mixture was pyrolyzed at $500^{\circ}C$ for 6 hrs. The adsorption characteristics of 10 VOCs to the biochar were tested. The results indicated that the removal efficiency of the KOH activated biochar was highest in 100% KOH-biochar. The VOC removal efficiencies of 50% and 200% KOH activated biochar were similar and the 0% KOH activated biochar showed the lowest VOC removal. The FTIR results showed that increasing the amount of KOH seemed to enhance the formation of various functional groups, such as -OH, -C=C, -O. The adsorption strength of 10 VOCs to the KOH activated biochar seemed to be increasing by the increase of the solubility of VOCs. This may suggest that the adsorption is taking place in hydrophilic sites of the biochar surface. The KOH activated pine tree needle leaves biochar can be an effective sorbent for VOCs removal in water and 100% KOH mixing seemed to provide better sorption capacity.