DOI QR코드

DOI QR Code

Estimation and Analysis of VOCs Emissions from Painting and Printing Facilities in Industrial Complexes of Gwangju

광주지역 산업단지 도장·인쇄시설의 휘발성유기화합물 배출 특성 평가

  • Kim, Seung-Ho (Gwangju Metropolitan Health & Environment Research Institute Department of Environmental Engineering) ;
  • Seo, Dong-Ju (Gwangju Metropolitan Health & Environment Research Institute Department of Environmental Engineering) ;
  • Kim, Ha-Ram (Gwangju Metropolitan Health & Environment Research Institute Department of Environmental Engineering) ;
  • Park, Jin-Hwan (Gwangju Metropolitan Health & Environment Research Institute Department of Environmental Engineering) ;
  • Lee, Ki-Won (Gwangju Metropolitan Health & Environment Research Institute Department of Environmental Engineering) ;
  • Bae, Seok-Jin (Gwangju Metropolitan Health & Environment Research Institute Department of Environmental Engineering) ;
  • Song, Hyeong-Myeong (Gwangju Metropolitan Health & Environment Research Institute Department of Environmental Engineering)
  • 김승호 (광주광역시보건환경연구원 환경연구부) ;
  • 서동주 (광주광역시보건환경연구원 환경연구부) ;
  • 김하람 (광주광역시보건환경연구원 환경연구부) ;
  • 박진환 (광주광역시보건환경연구원 환경연구부) ;
  • 이기원 (광주광역시보건환경연구원 환경연구부) ;
  • 배석진 (광주광역시보건환경연구원 환경연구부) ;
  • 송형명 (광주광역시보건환경연구원 환경연구부)
  • Received : 2020.03.02
  • Accepted : 2020.04.22
  • Published : 2020.05.31

Abstract

This study analyses the characteristics of volatile organic compounds (VOCs) emissions from the painting and printing facilities, as well as ambient VOCs at industrial complexes in Gwangju. The major components of VOCs emissions from painting facilities were toluene, acetone, 2-butanone, ethyl acetate, ethyl benzene, o-xylene and m,p-xylene. The printing facilities mostly emitted ethyl acetate, 2-butanone, acetone and toluene. Aromatics (49.9%) and oxygenated VOCs (43.6%) were dominant in painting facilities, while oxygenated VOCs (92.7%) were the largest group in printing facilities. The total hydrocarbon concentration (THC) in printing facilities was approximately six times higher than in the painting facilities. The painting and printing facilities use many solvents. Their THC concentrations differed considerably depending on the type of prevention facilities. To reduce THC, it is necessary to improve the prevention facilities and operating conditions. The dominant species of ambient VOCs in industrial complexes were investigated with toluene, ethyl acetate, 2-butanone, ethyl benzene, m,p-xylene, butyl acetate, o-xylene, hexane and acetone. Factor analysis of ambient VOCs showed that the main sources of the VOCs were organic solvents used in painting, coating, and printing, as well as automobile emissions.

Keywords

References

  1. An, T., Huang, Y., Li, G., He, Z., Chen, J., Zhang, C., 2014, Pollution profiles and health risk assessment of VOCs emitted during e-waste dismantling processes associated with different dismantling methods, Environ. Int., 73(1), 186-194. https://doi.org/10.1016/j.envint.2014.07.019
  2. Atkinson, R., 2000, Atmospheric chemistry of VOCs and NOx, Atmos. Environ. 34(12-14), 2063-2101. https://doi.org/10.1016/S1352-2310(99)00460-4
  3. Cai, C., Geng, F., Tie, X., Yu, Q., An, J., 2010, Characteristics and source apportionment of VOCs measured in Shanghai, China., Atmos. Environ., 44(38), 5005-5014. https://doi.org/10.1016/j.atmosenv.2010.07.059
  4. Chang, C. C., Wang, J. L., Lung, S. C. C., Liu, S. C., Shiu, C. J., 2009, Source characterization of ozone precursors by complementary approaches of vehicular indicator and principal component analysis, Atmos. Environ., 43(10), 1771-1778. https://doi.org/10.1016/j.atmosenv.2008.12.023
  5. Cheong, J. P., You, S. J., 2011, Characteristics and identification of ambient VOCs sources in Busan industrial area, J. Kor. Soc. Environ. Eng., 33(9), 644-655. https://doi.org/10.4491/KSEE.2011.33.9.644
  6. Choi, S. W., 2007, Characteristic of BTEX concentration ratio of VOC emission sources and ambient air in Daegu, J. Environ. Sci. Int., 16(4), 415-423. https://doi.org/10.5322/JES.2007.16.4.415
  7. Jang, Y. C., Lee, S. W., Shin, Y. S., Kim, H. K., Lee, J. H., 2011, Human health risk assessment of benzene from industrial complexes of Chungcheong and Jeonla province, J. Environ. Impact Assess., 20(4), 497-507. https://doi.org/10.14249/EIA.2011.20.4.497
  8. Janine, L., Michael, D. A., 2004, Catalytic oxidation of chlorinated benzenes over $V_2O_5/TiO_2$ catalysts, J. Catal., 223(2), 296-308. https://doi.org/10.1016/j.jcat.2004.01.032
  9. Kim, D. G., Song, I. S., Woo, J. S., Bae, Y. S., Lee, Y. K., Park, I. B., Han, H. S., Kim, Y. J., Kim, J. S., 2018, Concentration distribution of toxic volatile organic hydrocarbons in Gyeonggi-do' atmosphere, J. Korean Soc. Environ. Anal., 21(1), 11-23.
  10. Kim, E. K., Song, H. B., Park, M. S., Lim, J. K., Kwon, J. D., Choi, S. J., Park, S. K., Han, G. H., 2014, The concentrations of ambient VOCs at industrial complex area in Daegu city, J. Kor. Soc. Environ. Eng., 36(7), 498-505. https://doi.org/10.4491/KSEE.2014.36.7.498
  11. Kim, J. H., Sohn, Y. L., Kim, H. S., Jang, T. H., Yoo, K. S., 2013, A Study on present conditions and improvement alternatives of vapor recovery unit of stage II at gas stations, Journal of Environmental Policy and Administration, 21(2), 115-140.
  12. Kroll, J. H., Ng, N. L., Murphy, S. M., Flagan, R. C., Seinfeld, J. H., 2006, Secondary organic aerosol formation from isoprene photooxidation, Environ. Sci. Technol., 40(6), 1869-1877. https://doi.org/10.1021/es0524301
  13. Lee, S. H., Lee, D. H., Park, K. S., Song, H. M., Yang, Y. C., Lee, K. W., Cho, Y. G., Seo, G. Y., 2016, A Study on characteristics of VOCs in Gwangju using statistical analysis, J. Korean Soc. Environ. Anal., 19(1), 12-23.
  14. Lee, Y. Y., Choi, H., Yun, J. H., Ryu, H. W., Cho, J. R., Seong, K. M., Cho, K. S., 2017, Characterization of odor-associated bacterial community in automobile HVAC (heating, ventilation and air conditioning) systems, J. Odor Indoor Environ., 16(1), 34-41. https://doi.org/10.15250/joie.2017.16.1.34
  15. Liu, J., Mu, Y., Zhang, Y., Zhang, Z., Wang, X, Liu, Y., Sun, Z., 2009, Atmospheric levels of BTEX compounds during the 2008 Olympic Games in the urban area of Beijing, Sci. Total Environ., 408(1), 109-116. https://doi.org/10.1016/j.scitotenv.2009.09.026
  16. National Institute of Environmental Research, 2019, 2016 national air pollutants emission, NIER-GP2018-131, NIER.
  17. Park, C. G., Yoo, N. J., Chol, B. K., Ko, K. B., 2009, A Treatment of low-leveled high-volume VOCs emitted from printing process using concentration with zeolite adsorptive honey rotor and catalytic combustion system, J. Environ. Sci. Int., 18(3), 283-288. https://doi.org/10.5322/JES.2009.18.3.283
  18. Scheff, P. A., Wadden, R. A., 1993, Receptor modeling of volatile organic compounds. 1. Emission inventory and validation, Environ. Sci. Technol., 27(4), 617-625. https://doi.org/10.1021/es00041a005
  19. Shen, L., Xiang, P., Liang, S., Chen, W., Wang, M., Lu, S., Wang, Z., 2018, Sources profiles of volatile organic compounds (VOCs) measured in a typical industrial process in Wuhan, Central China, Atmosphere, 9(8), 297-314. https://doi.org/10.3390/atmos9080297
  20. Song, B. J., Lee, S. M., Cho, G. J., Cho, J. G., You, P. J., Kim, G. G., 2012, VOC/HAPs emission characteristics & adsorption evaluation for paint products in Busan area, J. Kor. Soc. Environ. Eng., 34(5), 316-325. https://doi.org/10.4491/KSEE.2012.34.5.316
  21. Thurston, G., Spengler, J., 1985, A quantitative assessment of source contributions to inhalable particulate matter pollutions in metropolitan Boston, Atmos. Environ., 19(1), 9-25. https://doi.org/10.1016/0004-6981(85)90132-5
  22. Tsai, C. J., Mao, I. F., Ting, J. Y., Young, C. H., Lin, J. S., Li, W. L., 2016, Quality of chemical safety information in printing industry, Ann. Occup. Hyg., 60(3), 361-370. https://doi.org/10.1093/annhyg/mev079
  23. U.S. Environmental Protection Agency, 1997, Compendium of methods TO-17, determination of volatile organic compounds in ambient air using active sampling onto sorbent tubes, 2nd Ed., EPA/625/R-96/010b.
  24. U.S. Environmental Protection Agency, 2001, Final rule for control of emission of hazardous air pollutants from mobile sources-40 CFR parts 80 and 86, EPA, 66(61), 17230-17273.
  25. Wang, H. l., Qiao, Y. Z., Chen, C. H., Lu, J., Dai, H. X., Qiao, L. P., Lou, S. R., Huang, C., Li, L., Jing, S. G., Wu, J. P., 2014, Source profiles and chemical reactivity of volatile organic compounds from solvent use in Shanghai, China, Aerosol Air Qual. Res., 14(1), 301-310. https://doi.org/10.4209/aaqr.2013.03.0064
  26. Wang, M., Shao, M., Lu, S. H., Yang, Y. D., Chen, W. T., 2013, Evidence of coal combustion contribution to ambient VOCs during winter in Beijing, Chin. Chem. Lett., 24(9), 829-832. https://doi.org/10.1016/j.cclet.2013.05.029
  27. Watson, J. G., Chow, J. C., Fujita, E. M., 2001, Review of volatile organic compound source apportionment by chemical mass balance, Atmos. Environ., 35(9), 1567-1584. https://doi.org/10.1016/S1352-2310(00)00461-1
  28. Wu, X., Lu, Y., Zhou, S., Chen, L., Xu, B., 2016, Impact of climate change on human infectious diseases: empirical evidence and human adaptation, Environ. Int., 86(1), 14-23. https://doi.org/10.1016/j.envint.2015.09.007
  29. Yang, C., Qian, H., Li, X., Cheng, Y., He, H., Zeng, G., Xi, Y., 2018, Simultaneous removal of multicomponent VOCs in biofilters, Trends Biotechnol., 36(7), 673-685. https://doi.org/10.1016/j.tibtech.2018.02.004
  30. Zhang, X., Gao, B., Creamer, A. E., Cao, C., Li, Y., 2017, Adsorption of VOCs onto engineered carbon materials: a review, J. Hazard. Mater., 338(15), 102-123. https://doi.org/10.1016/j.jhazmat.2017.05.013
  31. Zhang, Y., Mu, Y., Liang, P., Xu, Z., Liu, J., Zhang, H., Wang, X., Gao, J., Wang, S., Chai, F., Mellouki, A., 2012, Atmospheric BTEX and carbonyls during summer seasons of 2008-2010 in Beijing, Atmos. Environ., 59(1), 186-191. https://doi.org/10.1016/j.atmosenv.2012.06.030
  32. Zheng, J., Yu, Y., Mo, Z., Zhang, Z., Wang, X., Yin, S., Peng, K., Yang, Y., Feng, X., Cai, H., 2013, Industrial sector-based Volatile Organic Compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China, Sci. Total Environ., 456-457, 127-136. https://doi.org/10.1016/j.scitotenv.2013.03.055