Browse > Article
http://dx.doi.org/10.5322/JESI.2020.29.5.479

Estimation and Analysis of VOCs Emissions from Painting and Printing Facilities in Industrial Complexes of Gwangju  

Kim, Seung-Ho (Gwangju Metropolitan Health & Environment Research Institute Department of Environmental Engineering)
Seo, Dong-Ju (Gwangju Metropolitan Health & Environment Research Institute Department of Environmental Engineering)
Kim, Ha-Ram (Gwangju Metropolitan Health & Environment Research Institute Department of Environmental Engineering)
Park, Jin-Hwan (Gwangju Metropolitan Health & Environment Research Institute Department of Environmental Engineering)
Lee, Ki-Won (Gwangju Metropolitan Health & Environment Research Institute Department of Environmental Engineering)
Bae, Seok-Jin (Gwangju Metropolitan Health & Environment Research Institute Department of Environmental Engineering)
Song, Hyeong-Myeong (Gwangju Metropolitan Health & Environment Research Institute Department of Environmental Engineering)
Publication Information
Journal of Environmental Science International / v.29, no.5, 2020 , pp. 479-494 More about this Journal
Abstract
This study analyses the characteristics of volatile organic compounds (VOCs) emissions from the painting and printing facilities, as well as ambient VOCs at industrial complexes in Gwangju. The major components of VOCs emissions from painting facilities were toluene, acetone, 2-butanone, ethyl acetate, ethyl benzene, o-xylene and m,p-xylene. The printing facilities mostly emitted ethyl acetate, 2-butanone, acetone and toluene. Aromatics (49.9%) and oxygenated VOCs (43.6%) were dominant in painting facilities, while oxygenated VOCs (92.7%) were the largest group in printing facilities. The total hydrocarbon concentration (THC) in printing facilities was approximately six times higher than in the painting facilities. The painting and printing facilities use many solvents. Their THC concentrations differed considerably depending on the type of prevention facilities. To reduce THC, it is necessary to improve the prevention facilities and operating conditions. The dominant species of ambient VOCs in industrial complexes were investigated with toluene, ethyl acetate, 2-butanone, ethyl benzene, m,p-xylene, butyl acetate, o-xylene, hexane and acetone. Factor analysis of ambient VOCs showed that the main sources of the VOCs were organic solvents used in painting, coating, and printing, as well as automobile emissions.
Keywords
Industrial complex; VOCs; Painting facility; Printing facility; Factor analysis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Lee, S. H., Lee, D. H., Park, K. S., Song, H. M., Yang, Y. C., Lee, K. W., Cho, Y. G., Seo, G. Y., 2016, A Study on characteristics of VOCs in Gwangju using statistical analysis, J. Korean Soc. Environ. Anal., 19(1), 12-23.
2 Lee, Y. Y., Choi, H., Yun, J. H., Ryu, H. W., Cho, J. R., Seong, K. M., Cho, K. S., 2017, Characterization of odor-associated bacterial community in automobile HVAC (heating, ventilation and air conditioning) systems, J. Odor Indoor Environ., 16(1), 34-41.   DOI
3 Liu, J., Mu, Y., Zhang, Y., Zhang, Z., Wang, X, Liu, Y., Sun, Z., 2009, Atmospheric levels of BTEX compounds during the 2008 Olympic Games in the urban area of Beijing, Sci. Total Environ., 408(1), 109-116.   DOI
4 National Institute of Environmental Research, 2019, 2016 national air pollutants emission, NIER-GP2018-131, NIER.
5 Park, C. G., Yoo, N. J., Chol, B. K., Ko, K. B., 2009, A Treatment of low-leveled high-volume VOCs emitted from printing process using concentration with zeolite adsorptive honey rotor and catalytic combustion system, J. Environ. Sci. Int., 18(3), 283-288.   DOI
6 Scheff, P. A., Wadden, R. A., 1993, Receptor modeling of volatile organic compounds. 1. Emission inventory and validation, Environ. Sci. Technol., 27(4), 617-625.   DOI
7 Shen, L., Xiang, P., Liang, S., Chen, W., Wang, M., Lu, S., Wang, Z., 2018, Sources profiles of volatile organic compounds (VOCs) measured in a typical industrial process in Wuhan, Central China, Atmosphere, 9(8), 297-314.   DOI
8 Kroll, J. H., Ng, N. L., Murphy, S. M., Flagan, R. C., Seinfeld, J. H., 2006, Secondary organic aerosol formation from isoprene photooxidation, Environ. Sci. Technol., 40(6), 1869-1877.   DOI
9 Song, B. J., Lee, S. M., Cho, G. J., Cho, J. G., You, P. J., Kim, G. G., 2012, VOC/HAPs emission characteristics & adsorption evaluation for paint products in Busan area, J. Kor. Soc. Environ. Eng., 34(5), 316-325.   DOI
10 Thurston, G., Spengler, J., 1985, A quantitative assessment of source contributions to inhalable particulate matter pollutions in metropolitan Boston, Atmos. Environ., 19(1), 9-25.   DOI
11 Tsai, C. J., Mao, I. F., Ting, J. Y., Young, C. H., Lin, J. S., Li, W. L., 2016, Quality of chemical safety information in printing industry, Ann. Occup. Hyg., 60(3), 361-370.   DOI
12 U.S. Environmental Protection Agency, 1997, Compendium of methods TO-17, determination of volatile organic compounds in ambient air using active sampling onto sorbent tubes, 2nd Ed., EPA/625/R-96/010b.
13 U.S. Environmental Protection Agency, 2001, Final rule for control of emission of hazardous air pollutants from mobile sources-40 CFR parts 80 and 86, EPA, 66(61), 17230-17273.
14 Wang, H. l., Qiao, Y. Z., Chen, C. H., Lu, J., Dai, H. X., Qiao, L. P., Lou, S. R., Huang, C., Li, L., Jing, S. G., Wu, J. P., 2014, Source profiles and chemical reactivity of volatile organic compounds from solvent use in Shanghai, China, Aerosol Air Qual. Res., 14(1), 301-310.   DOI
15 Wang, M., Shao, M., Lu, S. H., Yang, Y. D., Chen, W. T., 2013, Evidence of coal combustion contribution to ambient VOCs during winter in Beijing, Chin. Chem. Lett., 24(9), 829-832.   DOI
16 Watson, J. G., Chow, J. C., Fujita, E. M., 2001, Review of volatile organic compound source apportionment by chemical mass balance, Atmos. Environ., 35(9), 1567-1584.   DOI
17 Zhang, Y., Mu, Y., Liang, P., Xu, Z., Liu, J., Zhang, H., Wang, X., Gao, J., Wang, S., Chai, F., Mellouki, A., 2012, Atmospheric BTEX and carbonyls during summer seasons of 2008-2010 in Beijing, Atmos. Environ., 59(1), 186-191.   DOI
18 Wu, X., Lu, Y., Zhou, S., Chen, L., Xu, B., 2016, Impact of climate change on human infectious diseases: empirical evidence and human adaptation, Environ. Int., 86(1), 14-23.   DOI
19 Yang, C., Qian, H., Li, X., Cheng, Y., He, H., Zeng, G., Xi, Y., 2018, Simultaneous removal of multicomponent VOCs in biofilters, Trends Biotechnol., 36(7), 673-685.   DOI
20 Zhang, X., Gao, B., Creamer, A. E., Cao, C., Li, Y., 2017, Adsorption of VOCs onto engineered carbon materials: a review, J. Hazard. Mater., 338(15), 102-123.   DOI
21 Zheng, J., Yu, Y., Mo, Z., Zhang, Z., Wang, X., Yin, S., Peng, K., Yang, Y., Feng, X., Cai, H., 2013, Industrial sector-based Volatile Organic Compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China, Sci. Total Environ., 456-457, 127-136.   DOI
22 Janine, L., Michael, D. A., 2004, Catalytic oxidation of chlorinated benzenes over $V_2O_5/TiO_2$ catalysts, J. Catal., 223(2), 296-308.   DOI
23 An, T., Huang, Y., Li, G., He, Z., Chen, J., Zhang, C., 2014, Pollution profiles and health risk assessment of VOCs emitted during e-waste dismantling processes associated with different dismantling methods, Environ. Int., 73(1), 186-194.   DOI
24 Atkinson, R., 2000, Atmospheric chemistry of VOCs and NOx, Atmos. Environ. 34(12-14), 2063-2101.   DOI
25 Cai, C., Geng, F., Tie, X., Yu, Q., An, J., 2010, Characteristics and source apportionment of VOCs measured in Shanghai, China., Atmos. Environ., 44(38), 5005-5014.   DOI
26 Chang, C. C., Wang, J. L., Lung, S. C. C., Liu, S. C., Shiu, C. J., 2009, Source characterization of ozone precursors by complementary approaches of vehicular indicator and principal component analysis, Atmos. Environ., 43(10), 1771-1778.   DOI
27 Cheong, J. P., You, S. J., 2011, Characteristics and identification of ambient VOCs sources in Busan industrial area, J. Kor. Soc. Environ. Eng., 33(9), 644-655.   DOI
28 Choi, S. W., 2007, Characteristic of BTEX concentration ratio of VOC emission sources and ambient air in Daegu, J. Environ. Sci. Int., 16(4), 415-423.   DOI
29 Jang, Y. C., Lee, S. W., Shin, Y. S., Kim, H. K., Lee, J. H., 2011, Human health risk assessment of benzene from industrial complexes of Chungcheong and Jeonla province, J. Environ. Impact Assess., 20(4), 497-507.   DOI
30 Kim, D. G., Song, I. S., Woo, J. S., Bae, Y. S., Lee, Y. K., Park, I. B., Han, H. S., Kim, Y. J., Kim, J. S., 2018, Concentration distribution of toxic volatile organic hydrocarbons in Gyeonggi-do' atmosphere, J. Korean Soc. Environ. Anal., 21(1), 11-23.
31 Kim, E. K., Song, H. B., Park, M. S., Lim, J. K., Kwon, J. D., Choi, S. J., Park, S. K., Han, G. H., 2014, The concentrations of ambient VOCs at industrial complex area in Daegu city, J. Kor. Soc. Environ. Eng., 36(7), 498-505.   DOI
32 Kim, J. H., Sohn, Y. L., Kim, H. S., Jang, T. H., Yoo, K. S., 2013, A Study on present conditions and improvement alternatives of vapor recovery unit of stage II at gas stations, Journal of Environmental Policy and Administration, 21(2), 115-140.