• Title/Summary/Keyword: environmental DNA

Search Result 1,807, Processing Time 0.038 seconds

Overview on Molecular Toxicological Aspects of Helicobacter pylori Virulence Factor, Cytotoxin-associated Antigen A (CagA) (헬리코박터 파이로리의 병원성 단백질, CagA에 대한 분자 독성학적 측면에서의 고찰)

  • Kim Byung J.;Jung Hwa Jin;Hwang Jee Na;Kang Seok Ha;Oh Se-Jin;Seo Young Rok
    • Toxicological Research
    • /
    • v.20 no.3
    • /
    • pp.179-185
    • /
    • 2004
  • Helicobacter pylori (H. pylori) infects more than half of the people in the world as a major microbe to cause most of gastric diseases. Recently, cytotoxin associated-antigen A (CagA) is believed as one of the most important virulence factors of H. pylori. Molecular toxicological pathway of CagA is necessary to investigate for understanding the pathological and toxicological aspects of H. pylori, since this virulence protein harasses intercellular processes of host cells to get profit for the survival of H. pylori. CagA is coded from cag pathogenicity island (cag PAI) and translocated into host cells by Type 4 secretion system (TFSS). Tyrosine phosphorylation of CagA targets Src homology 2-containing phosphotyrosine phosphatase (SHP-2) to form a CagA-SHP-2 complex. This complex depends on the similarity of sequence between EPIYA motif and Src homology 2 domain (SH2 domain) of CagA. The generation of growth factors is an essential role of CagA in protecting and healing gastric mucosa for the survival of H. pylori. On the other hand, the activation of IL-8 by CagA induces neutrophils generating inflammation and free radicals. Indeed, free radicals are well known carcinogen to induce DNA damage. In addition, the transduction of mitogen-activation signal by CagA is one of the interesting features to understand how to cause cancer. The relationship between cancer and inflammation with CagA was mainly discussed in this review.

The Effects of Oxidative Stress Induced by Aluminum on Cellular Macromolecules in the Hippocampus and Cerebral Cortex of Rats (알루미늄을 투여한 흰쥐의 해마와 대뇌피질에서 Reactive Oxygen Species 생성으로 인한 생체거대분자의 산화적 손상)

  • Moon Chul-Jin;Koh Hyun-Chul;Shin In-Chul;Lee Eun-Hee;Moon Hae-Ran
    • Toxicological Research
    • /
    • v.20 no.3
    • /
    • pp.213-223
    • /
    • 2004
  • This work aimed to study the effectiveness of cellular oxidative parameter (malondial-dehyde, protein carbonyl, and 8-hydroxy-2'deoxyguanosine). The experimental groups were aluminum treated rats and control rats. Aluminum treatd rats were given intraperitoneally aluminum nitrate nonahydrate ($Al^{3+}$, 0.2 mmol/kg) daily for 30 days except Sunday. Control rats were injected 1 ml of saline. After the dose, rats were decapitated and hippocampus and cerebral cortex were removed. The measured parameters were tissue malondialdehyde (MDA, index of lipid peroxidation), protein carbonyl (index of protein oxidation), 8-hydroxy-2'-deoxy-guanosine (8-OHdG, index of DNA oxidation), reduced glutathione (GSH) levels as well as glutathione reductase (GR) and catalase. AI concentrations in the tissues were also measured. All results were corrected by tissue protein levels. The results were as followed; 1. The concentrations of AI in the cortex and hippocampus were significantly higher in the AI-treated rats than in the control rats. 2. Antioxidative enzyme's activity, catalase and GR, were significantly higher in the AI-treated rats than the control rats. GSH levels were also higher in the AI-treated rats. 3. MDA, protein carbonyl, and 8-OHdG concentration of AI-treated rats were significantly higher than those of control rats. 4. The concentrations of antioxidants, and oxidative stress parameter were correlated with the concentrations of AI in hippocampus and cerebral cortex. Catalase and GR activity were also correlated with the concentration of AI. Based on these results, it can be suggested that intraperitoneally injected AI was accumulated in the brain and induced the increase of antioxidant levels and antioxidative enzyme activity. Also, the oxidative products of cellular macromolecules are significantly related to tissue AI concentration. Therefore MDA, protein carbonyl, and 8-OHdG are useful markers for oxidative stress on cellular macromolecules.

Cloning and Expression in Pichia pastoris of a New Cytochrome P450 Gene from a Dandruff-causing Malassezia globosa

  • Lee, Eun-Chang;Ohk, Seul-Ong;Suh, Bo-Young;Park, Na-Hee;Kim, Beom-Joon;Kim, Dong-Hak;Chun, Young-Jin
    • Toxicological Research
    • /
    • v.26 no.1
    • /
    • pp.47-52
    • /
    • 2010
  • The Malassezia fungi are responsible for various human skin disorders including dandruff and seborrheic dermatitis. Of the Malassezia fungi, Malassezia globosa (M. globosa) is one of the most common in human scalp. The completed genome sequence of M. globosa contains four putative cytochrome P450 genes. To determine the roles of Malassezia P450 enzymes in the biosynthesis of ergosterol, we isolated MGL3996 gene from M. globosa chromosomal DNA by PCR. The MGL3996 gene encodes an enzyme of 616 amino acids, which shows strong similarity with known CYP52s of other species. MGL3996 gene was cloned and expressed in Pichia pastoris (P. pastoris) heterologous yeast expression system. Using the yeast microsomes expressing MGL3996 protein, a typical P450 CO-difference spectrum was shown with absorption maximum at 448 nm. SDS-PAGE analysis revealed a protein band of apparent molecular weight 69 kDa and Western blot with anti-histidine tag antibody showed that MGL3996 was successfully expressed in P. pastoris. Cloning and expression of a new P450 gene is an important step to study the P450 monooxygenase system of M. globosa and to understand the role of P450 enzymes in pathophysiology of dandruff.

Current Status of Human Taeniasis in Lao People's Democratic Republic

  • Jeon, Hyeong-Kyu;Yong, Tai-Soon;Sohn, Woon-Mok;Chai, Jong-Yil;Min, Duk-Young;Yun, Cheong-Ha;Rim, Han-Jong;Pongvongsa, Tiengkham;Banouvong, Virasack;Insisiengmay, Bounnaloth;Phommasack, Bounlay;Eom, Keeseon S.
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.2
    • /
    • pp.259-263
    • /
    • 2013
  • Human taeniasis was investigated in Lao People's Democratic Republic (Lao PDR) between 2000 and 2011 as part of the nation's helminthiasis survey. A total of 55,038 inhabitants, including 29,846 school children, were examined using the Kato-Katz and scotch-tape anal swab method, and morphological observation of adult worms. Molecular identification of Taenia tapeworms was performed by multiplex PCR or DNA sequence analysis of the mitochondrial cox1 gene. Taenia eggs were present at a rate of 1.5% (845/55,038) in the subject population. Adult tapeworms were identified as T. solium or T. saginata by analyzing the collectable stool specimens (n=126). Three specimens identified as T. solium were found in Luang Prabang, while the remaining 123 specimens, which were T. saginata, were found in Bokeo, Bolikhamxay, Champasak, Houaphan, Khammouane, Luang Namta, Luang Prabang, Oudomxay, Phongsaly, Saysomboune, Saravane, Savannakhet, Xayaboury, Xekong, Xieng Khouang Province, and Vientiane Municipality.

Epidemiologic Investigation on Sporadic Occurrence of Shigellosis in a Subcounty of Cheongwon County in Chungbuk Province in 2003 (청원군 일개 면에서 산발적으로 신고한 세균성이질 집단 발병 역학조사)

  • Lee, Yong-Jae;Hwang, Ue-Kyoung;Kim, Jong-Suk;Kim, Jun-Young;Lee, Bok-Kwon;Koo, Ja-Seol;Kang, Jong-Won
    • Journal of Preventive Medicine and Public Health
    • /
    • v.38 no.2
    • /
    • pp.182-188
    • /
    • 2005
  • Objectives: This study was undertaken to investigate the source of infection and mode of transmission of shigellosis, which occurred sporadically among residents and students in a subcounty of Cheongwon county, Chungbuk province, Korea, from June 4 to July 3 2003. Methods: 692 subjects completed a questionnaire and provided a swab for microbiological examinations,and 7 environmental specimens were examined for bacterial organisms. PFGE (pulsed-field gel electrophoresis) and fingerprinting were performed to find the genetic relationship among the temporally associated sporadic isolates. Results: A total of 29 patients had symptoms consistent with the case definition, with 13 confirmed and 16 suspected cases. The frequency of diarrhea was 6 times or more a day (80.8%), with a duration of 1 to 4 days (88.5%) in most cases. The most common symptoms accompanying the diarrhea were fever (80.9%) followed by abdominal pain (76.9%), headache (65.4%), chill (61.5%), vomiting (46.2%) and tenesmus (15.4%). The epidemic curve was characteristic of a person-to-person transmission. The PFGE and fingerprinting demonstrated identical or similar DNA patterns among the 3 Shigella sonnei isolates (A51, A53 and A61 types) found in this outbreak. Conclusion: A genetically identical strain of S. sonnei was estimated to be the cause of this outbreak, and the mode of transmission was most likely person-to-person.

Human Papillomavirus Genotypes and Cervical Cancer in Northeast Thailand

  • Natphopsuk, Sitakan;Settheetham-Ishida, Wannapa;Pientong, Chamsai;Sinawat, Supat;Yuenyao, Pissamai;Ishida, Takafumi;Settheetham, Dariwan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6961-6964
    • /
    • 2013
  • Human papillomavirus (HPV) is a major cause of cervical cancer. More than 100 HPV genotypes have been identified; however the distribution varies geographically and according to ethnicity. The purpose of this study was to investigate the prevalence and distribution of HPV subtypes among Northeast Thai women. Subjects included 198 cases of SCCA and 198 age-matched, healthy controls. HPV-DNA was amplified by PCR using the consensus primers GP5+/6+ system followed by reverse line blot hybridization genotyping. The prevalence of high-risk HPV infection was 21 (10.1%) and 152 (76.8%) in the controls and in the cases, respectively. High-risk HPV significantly increased the risk for cervical cancer with an OR of 42.4 (95%CI: 22.4-81.4, p<0.001) and an adjusted OR of 40.7-fold (95%CI: 21.5-76.8, p <0.001). HPV-16 was the most prevalent HPV type in the SCCA (56.2%) followed by HPV-58 (17.8%) and HPV-18 (13.6%); whereas HPV-58 (46.4%) was a prominent genotype in the controls followed by HPV-16 (39.3%) and unidentified HPV types (25.0%). These findings indicate that HPV infection remains a critical risk factor for SCCA; particularly, HPV-16, HPV-58 and HPV-18. In order to eradicate cervical cancer, sustained health education, promoted use of prophylactics and a HPV-58 vaccine should be introduced in this region.

Morphological and Genetic Diversity of Korean Native and Introduced Safflower Germplasm

  • Shim Kang-Bo;Bae Seok-Bok;Lim Si-Kyu;Suh Duck-Yong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.4
    • /
    • pp.337-341
    • /
    • 2004
  • Morphological and genetic diversity of thirty nine safflower germplasm were collected and evaluated by Principal Component Analysis (PCA) and Random Amplified Polymorphic DNA (RAPD) method. Stem length and seeding to flowering days of the safflower germplasm showed $26\~117cm\;and\;76\~179$ days of variation respectively. USA originated germplasm showed higher oil content as $39\%$, but that of Japanese showed lower as $26\%$. PCA made three different cluster groups according to some agronomic characteristics of safflower. Korea originated germplasm showed similar cluster group with that of collected from USA in the PCA of stem length. But in the seeding to flowering days, it showed similar cluster pattern with that of collected from Japan rather than USA. In the experiment of RAPD analysis, total five primers showed polymorphism at the several chromosomal loci. Korea, China Japan and South Central Asia originated germplasm were differently classified with USA and South West Asia originated germplasm with lower similarity coefficient value (0.47). Most of Korea originated germplasm were grouped with South Central Asia originated germplasm with higher similarity coefficient value (0.74) conferring similar genetic background between both of them. China and Japan originated germplasm were dendrogramed with Korea originated germplasm at the 0.65 and 0.50 similarity coefficient values respectively. Some common results were expected from both of PCA and RAPD analysis, but lower genetic heritability caused by relative higher portion of environmental variance and environment by genotype interaction at the expression of those of agronomic characteristics made constraint to find any reliable results.

Plant breeding in the 21st century: Molecular breeding and high throughput phenotyping

  • Sorrells, Mark E.
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.14-14
    • /
    • 2017
  • The discipline of plant breeding is experiencing a renaissance impacting crop improvement as a result of new technologies, however fundamental questions remain for predicting the phenotype and how the environment and genetics shape it. Inexpensive DNA sequencing, genotyping, new statistical methods, high throughput phenotyping and gene-editing are revolutionizing breeding methods and strategies for improving both quantitative and qualitative traits. Genomic selection (GS) models use genome-wide markers to predict performance for both phenotyped and non-phenotyped individuals. Aerial and ground imaging systems generate data on correlated traits such as canopy temperature and normalized difference vegetative index that can be combined with genotypes in multivariate models to further increase prediction accuracy and reduce the cost of advanced trials with limited replication in time and space. Design of a GS training population is crucial to the accuracy of prediction models and can be affected by many factors including population structure and composition. Prediction models can incorporate performance over multiple environments and assess GxE effects to identify a highly predictive subset of environments. We have developed a methodology for analyzing unbalanced datasets using genome-wide marker effects to group environments and identify outlier environments. Environmental covariates can be identified using a crop model and used in a GS model to predict GxE in unobserved environments and to predict performance in climate change scenarios. These new tools and knowledge challenge the plant breeder to ask the right questions and choose the tools that are appropriate for their crop and target traits. Contemporary plant breeding requires teams of people with expertise in genetics, phenotyping and statistics to improve efficiency and increase prediction accuracy in terms of genotypes, experimental design and environment sampling.

  • PDF

Altered Gene Expression and Intracellular Changes of the Viable But Nonculturable State in Ralstonia solanacearum by Copper Treatment

  • Um, Hae Young;Kong, Hyun Gi;Lee, Hyoung Ju;Choi, Hye Kyung;Park, Eun Jin;Kim, Sun Tae;Murugiyan, Senthilkumar;Chung, Eunsook;Kang, Kyu Young;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.29 no.4
    • /
    • pp.374-385
    • /
    • 2013
  • Environmental stresses induce several plant pathogenic bacteria into a viable but nonculturable (VBNC) state, but the basis for VBNC is largely uncharacterized. We investigated the physiology and morphology of the copper-induced VBNC state in the plant pathogen Ralstonia solanacearum in liquid microcosm. Supplementation of $200{\mu}M$ copper sulfate to the liquid microcosm completely suppressed bacterial colony formation on culture media; however, LIVE/DEAD BacLight bacterial viability staining showed that the bacterial cells maintained viability, and that the viable cells contain higher level of DNA. Based on electron microscopic observations, the bacterial cells in the VBNC state were unchanged in size, but heavily aggregated and surrounded by an unknown extracellular material. Cellular ribosome contents, however, were less, resulting in a reduction of the total RNA in VBNC cells. Proteome comparison and reverse transcription PCR analysis showed that the Dps protein production was up-regulated at the transcriptional level and that 2 catalases/peroxidases were present at lower level in VBNC cells. Cell aggregation and elevated levels of Dps protein are typical oxidative stress responses. $H_2O_2$ levels also increased in VBNC cells, which could result if catalase/peroxidase levels are reduced. Some of phenotypic changes in VBNC cells of R. solanacearum could be an oxidative stress response due to $H_2O_2$ accumulation. This report is the first of the distinct phenotypic changes in cells of R. solanacearum in the VBNC state.

Expression of CYP2A6, CYP2D6 and CYP4A11 Polymorphisms in COS7 Mammalian Cell Line

  • Lee, Hye-Ja;Park, Mi-Kyung;Park, Young-Ran;Kim, Dong-Hak;Yun, Chul-Ho;Chun, Young-Jin;Shin, Hee-Jung;Na, Han-Sung;Chung, Myeon-Woo;Lee, Chang-Hoon
    • Toxicological Research
    • /
    • v.27 no.1
    • /
    • pp.25-29
    • /
    • 2011
  • The cytochrome P450 (P450, CYP) are the superfamily of heme-containing monooxygenase enzymes, found throughout all nature including mammals, plants, and microorganisms. Mammalian P450 enzymes are involved in oxidative metabolism of a wide range of endo- and exogenous chemicals. Especially P450s involved in drug metabolisms are important for drug efficacy and polymorphisms of P450s in individuals reflect differences of drug responses between people. To study the functional differences of CYP2A6, CYP2D6, and CYP4A11 variants, we cloned the four CYP2A6, three CYP2D6, and three CYP4A11 variants, which were found in Korean populations, in mammalian expression vector pcDNA by PCR and examined their expressions in COS-7 mammalian cells using immunoblots using P450 specific polyclonal antibodies. Three of four CYP2A6, two of three CYP4A11, and two of three CYP2D6 variants showed expressions in COS-7 cells but the relative levels of expressions are remarkably different in those of each variants. Our findings may help to study and explain the differences between functions of CYP variants and drug responses in Korean populations.