• Title/Summary/Keyword: environmental DNA

Search Result 1,807, Processing Time 0.028 seconds

Screening and Characterization of Secretion Signals from Lactococcus lactis ssp. cremoris LM0230

  • Jeong, Do-Won;Choi, Youn-Chul;Lee, Jung-Min;Seo, Jung-Min;Kim, Jeong-Hwan;Lee, Jong-Hoon;Kim, Kyoung-Heon;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.1052-1056
    • /
    • 2004
  • A secretion signal sequence-selection vector (pGS40) was constructed based on an $\alpha$-amylase gene lacking a secretion signal and employed for selecting secretion signals from Lactococcus lactis ssp. cremoris LM0230 chromosomal DNA. Six fragments were identified based on their ability to restore $\alpha$-amylase secretion in E. coli, and among these, a fragment, S405, conferred the highest secretion activity (84%) in E. coli. Meanwhile, S407, which conferred poor secretion activity in E. coli, was quite active in L. lactis. The results suggested that the efficiency of a secretion signal depended on the host. All six fragments had an open reading frame (ORF) fused to the reporter gene, and the potential Shine-Dalgamo (SD) sequence and putative promoter sequences were located upstream of the ORF. Deduced amino acid sequences from the six fragments did not show any homology with known secretion signals. However, they contained three distinguished structural features and cleavage sites, commonly found among typical secretion signals. The characterized secretion signals could be useful for the construction of food-grade secretion vectors and gene expression in LAB.

Effects of Diverse Water Pipe Materials on Bacterial Communities and Water Quality in the Annular Reactor

  • Jang, Hyun-Jung;Choi, Young-June;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.115-123
    • /
    • 2011
  • To investigate the effects of pipe materials on biofilm accumulation and water quality, an annular reactor with the sample coupons of four pipe materials (steel, copper, stainless steel, and polyvinyl chloride) was operated under hydraulic conditions similar to a real plumbing system for 15 months. The bacterial concentrations were substantially increased in the steel and copper reactors with progression of corrosion, whereas those in stainless steel (STS) and polyvinyl chloride (PVC) reactors were affected mainly by water temperature. The heterotrophic plate count (HPC) of biofilms was about 100 times higher on steel pipe than other pipes throughout the experiment, with the STS pipe showing the lowest bacterial number at the end of the operation. Analysis of the 16S rDNA sequences of 176 cultivated isolates revealed that 66.5% was Proteobacteria and the others included unclassified bacteria, Actinobacteria, and Bacilli. Regardless of the pipe materials, Sphingomonas was the predominant species in all biofilms. PCR-DGGE analysis showed that steel pipe exhibited the highest bacterial diversity among the metallic pipes, and the DGGE profile of biofilm on PVC showed three additional bands not detected from the profiles of the metallic materials. Environmental scanning electron microscopy showed that corrosion level and biofilm accumulation were the least in the STS coupon. These results suggest that the STS pipe is the best material for plumbing systems in terms of the microbiological aspects of water quality.

Fungal Diversity in Composting Process of Pig Manure and Mushroom Cultural Waste Based on Partial Sequence of Large Subunit rRNA

  • Cho, Kye-Man;Kwon, Eun-Ju;Kim, Sung-Kyum;Kambiranda, Devaiah M;Math, Reukaradhya K;Lee, Young-Han;Kim, Jung-Ho;Yun, Han-Dae;Kim, Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.8
    • /
    • pp.743-748
    • /
    • 2009
  • Fungal diversity during composting was investigated by culture-independent rDNA sequence analysis. Composting was carried out with pig manure and mushroom cultural waste using a field-scale composter (Hazaka system), and samples were collected at various stages. Based on partial sequence analysis of large subunit (LSU) ribosomal RNA (rRNA) and sequence identity values, a total of 12 different fungal species were found at six sampling sites; Geotrichum sp., Debaryomyces hansenii, Monographella nivalis, Acremonium strictum, Acremonium alternatum, Cladosporium sphaerospermum, Myriangium durosai, Pleurotus eryngii, Malassezia globosa, Malassezia restricta, Rhodotorula glutinis, and Fusarium sporotrichioides. Geotrichum sp. of the class Saccharomycetes was the most predominant fungal species throughout the composting process (185 out of a total of 236 identified clones, or 78.4%), followed by Acremonium strictum (7.6%), Monographella nivalis (5.1%), and Pleurotus eryngii (3.8%). The prevalence of Geotrichum sp. was the lowest (61.1%) at the beginning of composting, and then gradually increased to 92.5% after 10 days of composting.

Study on the construction of a starvation promoter vector system derived from Pseudomonas putida (Pseudomonas putida 에서 분리된 starvation promoter를 이용한 vector의 개발 및 응용에 관한 연구)

  • Kim, Young-Jun;Kim, Dae-Sun;Chung, Jae-Chun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.3
    • /
    • pp.67-74
    • /
    • 2003
  • Starvation promoters can be utilized for in situ bioremediation and for the efficient bioprocessing. Previously we have cloned and characterized strong starvation promoters from envrionmentally relevant bacteria, Pseudomonas putida strains (Y. Kim, and A. Matin, J. Bacteriol. 177:1850-1859, 1995). Here we report the construction of the plasmid pYKS101 using one of the starvation promoters from P. putida MK1. The pYKS101 was found to be useful for a novel starvation promoter-driven gene expression system. Under this system, the target reporter gene, lacZ, was stably integrated into the chromosomal DNA of P. putida MK1. ${\beta}$-galactosidase activity was found to be four-fold higher upon carbon starvation than during exponential growth. The resultant recombinant strain is indigenous to the environment contaminated with various toxic materials, hence can be a good candidate for in situ bioremediation.

  • PDF

Characterization of Styrene Catabolic Genes of Pseudomonas putida SN1 and Construction of a Recombinant Escherichia coli Containing Styrene Monooxygenase Gene for the Production of (S)-Styrene Oxide

  • Park Mi-So;Bae Jong-Won;Han Ju-Hee;Lee Eun-Yeol;Lee Sun-Gu;Park Sung-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.7
    • /
    • pp.1032-1040
    • /
    • 2006
  • Some Pseudomonas species can grow on styrene as a sole carbon and energy source. From the new isolate Pseudomonas putida SN1, the genes for styrene catabolism were cloned and sequenced. They were composed of four structural genes for styrene monooxygenase (styA and styB), styrene oxide isomerase (styC), and phenylacetaldehyde dehydrogenase (styD), along with two genes for the regulatory system (styS and styR). All the genes showed high DNA sequence (91% to 99%) and amino acid sequence (94% to 100%) similarities with the corresponding genes of the previously reported styrene-degrading Pseudomonas strains. A recombinant Escherichia coli to contain the styrene monooxygenase from the SN1 was constructed under the control of the T7 promoter for the production of enantiopure (S)-styrene oxide, which is an important chiral building block in organic synthesis. The recombinant E. coli could convert styrene into an enantiopure (S)-styrene oxide (ee >99%) when induced by IPTG The maximum activity was observed as 140 U/g cell, when induced with 1 mM IPTG at $15^{\circ}C$.

Implementation of a bio-inspired two-mode structural health monitoring system

  • Lin, Tzu-Kang;Yu, Li-Chen;Ku, Chang-Hung;Chang, Kuo-Chun;Kiremidjian, Anne
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.119-137
    • /
    • 2011
  • A bio-inspired two-mode structural health monitoring (SHM) system based on the Na$\ddot{i}$ve Bayes (NB) classification method is discussed in this paper. To implement the molecular biology based Deoxyribonucleic acid (DNA) array concept in structural health monitoring, which has been demonstrated to be superior in disease detection, two types of array expression data have been proposed for the development of the SHM algorithm. For the micro-vibration mode, a two-tier auto-regression with exogenous (AR-ARX) process is used to extract the expression array from the recorded structural time history while an ARX process is applied for the analysis of the earthquake mode. The health condition of the structure is then determined using the NB classification method. In addition, the union concept in probability is used to improve the accuracy of the system. To verify the performance and reliability of the SHM algorithm, a downscaled eight-storey steel building located at the shaking table of the National Center for Research on Earthquake Engineering (NCREE) was used as the benchmark structure. The structural response from different damage levels and locations was collected and incorporated in the database to aid the structural health monitoring process. Preliminary verification has demonstrated that the structure health condition can be precisely detected by the proposed algorithm. To implement the developed SHM system in a practical application, a SHM prototype consisting of the input sensing module, the transmission module, and the SHM platform was developed. The vibration data were first measured by the deployed sensor, and subsequently the SHM mode corresponding to the desired excitation is chosen automatically to quickly evaluate the health condition of the structure. Test results from the ambient vibration and shaking table test showed that the condition and location of the benchmark structure damage can be successfully detected by the proposed SHM prototype system, and the information is instantaneously transmitted to a remote server to facilitate real-time monitoring. Implementing the bio-inspired two-mode SHM practically has been successfully demonstrated.

SLA Genetic Polymorphism and Large Scale Gene Expression Profiling of Cloned SNU Miniature Pigs Derived from Same Cell Line

  • Yeom, Su-Cheong;Koo, Ok Jae;Park, Chung-Gyu;Lee, Byeong-Chun;Lee, Wang-Jae
    • Reproductive and Developmental Biology
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • In order to investigate genetic stability and gene expression profile after cloning procedure, two groups of cloned pigs were used for swine leukocyte antigen (SLA) gene nucleotide alteration and microarray analyses. Each group was consist of cloned pigs derived from same cell line (n=3 and 4, respectively). Six SLA loci were analyzed for cDNA sequences and protein translations. In total, 16 SLA alleles were identified and there were no evidence of SLA nucleotide alteration. All SLA sequences and protein translations were identical among the each pig in the same group. On the other hand, microarray assay was performed for profiling gene expression of the cloned pigs. In total, 43,603 genes were analyzed and 2,150~4,300 reliably hybridized spots on the each chip were selected for further analysis. Even though the cloned pigs in the same group had identical genetic background, 18.6~47.3% of analyzed genes were differentially expressed in between each cloned pigs. Furthermore, on gene clustering analysis, some cloned pigs showed abnormal physiological phenotypes such as inflammation, cancer or cardiomyopathy. We assumed that individual environmental adaption, sociality and rank in the pen might have induced these different phenotypes. In conclusion, the results of the present study indicate that SLA locus genes appear to be stable following SCNT. However, gene expressions and phenotypes between cloned pigs derived from the same cell line were not identical even under the same rearing conditions.

Genetic Diversity of Cultivable Plant Growth-Promoting Rhizobacteria in Korea

  • Kim, Won-Il;Cho, Won-Kyong;Kim, Su-Nam;Chu, Hyo-Sub;Ryu, Kyoung-Yul;Yun, Jong-Chul;Park, Chang-Seuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.8
    • /
    • pp.777-790
    • /
    • 2011
  • To elucidate the biodiversity of plant growth-promoting rhizobacteria (PGPR) in Korea, 7,638 bacteria isolated from the rhizosphere of plant species growing in many different regions were screened. A large number of PGPR were identified by testing the ability of each isolate to promote the growth of cucumber seedlings. After redundant rhizobacteria were removed via amplified rDNA restriction analysis, 90 strains were finally selected as PGPR. On the basis of 16S ribosomal RNA sequences, 68 Gram-positive (76%) and 22 Gram-negative (24%) isolates were assigned to 21 genera and 47 species. Of these genera, Bacillus (32 species) made up the largest complement, followed by Paenibacillus (19) and Pseudomonas (11). Phylogenetic analysis showed that most of the Grampositive PGPR fell into two categories: low- and high- G+C (Actinobacteria) strains. The Gram-negative PGPR were distributed in three categories: ${\alpha}$-proteobacteria, ${\beta}$- proteobacteria, and ${\gamma}$-proteobacteria. To our knowledge, this is the largest screening study designed to isolate diverse PGPR. The enlarged understanding of PGPR genetic diversity provided herein will expand the knowledge base regarding beneficial plant-microbe interactions. The outcome of this research may have a practical effect on crop production methodologies.

Sulfate Reduction for Bioremediation of AMD Facilitated by an Indigenous Acid- and Metal-Tolerant Sulfate-Reducer

  • Nguyen, Hai Thi;Nguyen, Huong Lan;Nguyen, Minh Hong;Nguyen, Thao Kim Nu;Dinh, Hang Thuy
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1005-1012
    • /
    • 2020
  • Acid mine drainage (AMD) has been a serious environmental issue that threatens soil and aquatic ecosystems. In this study, an acid-tolerant sulfate-reducing bacterium, strain S4, was isolated from the mud of an AMD storage pond in Vietnam via enrichment in anoxic mineral medium at pH 5. Comparative analyses of sequences of the 16S rRNA gene and dsrB gene involved in sulfate reduction revealed that the isolate belonged to the genus Desulfovibrio, and is most closely related to Desulfovibrio oxamicus (with 99% homology in 16S rDNA sequence and 98% homology in dsrB gene sequence). Denaturing gradient gel electrophoresis (DGGE) analyses of dsrB gene showed that strain S4 represented one of the two most abundant groups developed in the enrichment culture. Notably, strain S4 was capable of reducing sulfate in low pH environments (from 2 and above), and resistance to extremely high concentration of heavy metals (Fe 3,000 mg/l, Zn 100 mg/l, Cu 100 mg/l). In a batch incubation experiment in synthetic AMD with pH 3.5, strain S4 showed strong effects in facilitating growth of a neutrophilic, metal sensitive Desulfovibrio sp. strain SR4H, which was not capable of growing alone in such an environment. Thus, it is postulated that under extreme conditions such as an AMD environment, acid- and metal-tolerant sulfate-reducing bacteria (SRB)-like strain S4 would facilitate the growth of other widely distributed SRB by starting to reduce sulfate at low pH, thus increasing pH and lowering the metal concentration in the environment. Owing to such unique physiological characteristics, strain S4 shows great potential for application in sustainable remediation of AMD.

Association study between OCTN1 functional haplotypes and Crohn's disease in a Korean population

  • Jung, Eun Suk;Park, Hyo Jin;Kong, Kyoung Ae;Choi, Ji Ha;Cheon, Jae Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.11-17
    • /
    • 2017
  • Crohn's disease (CD) is a chronic inflammatory bowel disease with multifactorial causes including environmental and genetic factors. Several studies have demonstrated that the organic cation/carnitine transporter 1 (OCTN1) non-synonymous variant L503F is associated with susceptibility to CD. However, it was reported that L503F is absent in Asian populations. Previously, we identified and functionally characterized genetic variants of the OCTN1 promoter region in Koreans. In that study, four variants demonstrated significant changes in promoter activity. In the present study, we determined whether four functional variants of the OCTN1 promoter play a role in the susceptibility to or clinical course of CD in Koreans. To examine it, the frequencies of the four variants of the OCTN1 promoter were determined by genotyping using DNA samples from 194 patients with CD and 287 healthy controls. Then, associations between genetic variants and the susceptibility to CD or clinical course of CD were evaluated. We found that susceptibility to CD was not associated with OCTN1 functional promoter variants or haplotypes showing altered promoter activities in in vitro assays. However, OCTN1 functional promoter haplotypes showing decreased promoter activities were significantly associated with a penetrating behavior in CD patients (HR=2.428, p=0.009). Our results suggest that the OCTN1 functional promoter haplotypes can influence the CD phenotype, although these might not be associated with susceptibility to this disease.