• Title/Summary/Keyword: environment-friendly insect pest control

Search Result 21, Processing Time 0.02 seconds

Efficacy of Light and Odor Barriers in Controlling Insect Pest Evasion by Modulating Light and Gas Environments

  • Jahyun Na;Jae Hun Yoo;Yong-Hoo Kwon;Sanghun Yeo;Gyung Deok Han
    • Journal of Environmental Science International
    • /
    • v.33 no.8
    • /
    • pp.575-581
    • /
    • 2024
  • Insect pests are a significant threat to stored crops and can lead to considerable economic losses and reduced crop quality. Traditional pest control methods often involve chemical treatments, which have adverse environmental and health effects. This study evaluated the effectiveness of controlling the environment using LED lighting and plant-derived odor barriers as a dual strategy for insect pest control. The storage environment was altered using LED lights that emitted specific wavelengths (580-585 nm) and by reducing other wavelengths (300-500 nm). This light environment was combined with an insect odor barrier derived from Cinnamomum verum, Illicium verum, and Artemisia annua, and their duel impact on the behavior and frequency of insect pests under real storage conditions was determined. The findings revealed significant changes in the frequencies of various insect orders, indicating differential responses to light wavelengths and odor barriers. Notably, the introduction of an anti-insect light and odor barrier environment reduced Diptera and Hemiptera frequencies, which could potentially reduce pest intrusion. The results underscore the potential use of integrated light and odor barriers as a noninvasive and environmentally friendly approach to pest management. This study identifies the specific wavelengths and odor combinations that effectively deter insect pests and contribute to the development of more efficient and sustainable pest control methods. It also highlights the importance of understanding insect behavior and frequency changes in response to novel deterrent strategies.

Efficiency of LED Trap on Controlling Tobacco Whitefly, Bemisia tabaci Adults in Greenhouse (온실에 발생하는 담배가루이 성충에 대한 LED 트랩 방제효과)

  • Jeon, Ju-Hyun;Lee, Sang-Guei;Lee, Hoi-Seon
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.3
    • /
    • pp.243-245
    • /
    • 2014
  • To evaluate light-emitting diode (LED) as potential attractants for Bemisia tabaci adults, attractiveness of white and yellow LED traps were investigated in greenhouse. The yellow LED trap showed the most attractive to B. tabaci adults, followed by a similarly attraction to the white LED trap, whereas the control (no light trap) was little attractive to B. tabaci adults. These results suggested that yellow and white LED traps could be used for environment-friendly insect pest control.

Development and evaluation of a model for management of plant pests in organic cucumber cultivation

  • Ko, S.J.;Kang, B.R.;Kim, D.I.;Choi, D.S.;Kim, S.G.;Kim, H.K.;Kim, H.J.;Choi, K.J.;Kim, Y.C.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.263-266
    • /
    • 2011
  • Crop protection strategies in organic horticulture aim to prevent insect pest and plant disease problems through utilization of non-chemical based control means. In order to develop a model for management of plant diseases and insects in organic cucumber cultivation, we compared efficacies between chemical pesticide spraying system and biological control means in semi-forcing and retarding cucumber cultivation during 2005 and 2006. Conventional chemical spray program using various chemical pesticides was applied 5 - 10 days intervals, while two different non-chemical pesticide application programs using two formulated biopesticides Topseed$^{TM}$ and Q-fect$^{TM}$, Suncho$^{TM}$, and Sangsungje$^{TM}$ (biocontrol agents 1) and using egg-yolk and cooking oil(EYCO), Bordeaux mixture, Suncho$^{TM}$, and Sangsungje$^{TM}$ (biocontrol agents 2) were applied 5 - 7 days intervals during entire cucumber cultivation period. Efficacy of both biocontrol agents programs was effective to comparable to conventional chemical pesitice spray program to control plant diseases such as powdery mildew and downy mildew as well as insect pests such as aphids and thrips which are known as major threats in cucumber organic cultivation. In this study, we established and evaluated an effective and economic crop protection strategy using various biological resources can be used to control plant diseases and pests simultaneously in organic cucumber cultivation field.

Controlling Effect of Some Plant Extracts on Pathogenic Fungi and Pest of Rice (몇 가지 식물추출물의 벼 병해충 방제 효과)

  • Hwang, Ki-Cheol;Shin, So-Hee;Chung, Nam-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.2
    • /
    • pp.269-280
    • /
    • 2014
  • This study was performed to test the insecticidal and antimicrobial activity of plant extracts from clove, Sophora flavescens Aiton and neem. As the result of antimicrobial activity test, clove extract showed the strongest activity against Botrytis cinerea. In insecticidal activity test, the extract of Sophora flavescens Aiton was the highest against Nilaparvata lugens. The pyroligneous liquor (10%) and emulsified spreader (10%) were added to the extracts of clove and Sophora, respectively, to apply the environment-friendly rice field. In the field treated clove extract, disease damage occurred 49.1% and insect damage occurred 29.5% compared to control plot (100%). In the field treated Sophora extract, disease damage was 56.7% and insect damage was 21.0% compared to control plot (100%). In conclusion, plant extracts from Sophora and clove could control about 50% of disease and about 70% of insect damage that they could be used as environment-friendly resources to control disease and insect in rice farming.

A Survey on the Perception of Companion Plants for Eco-Friendly Urban Agriculture among Urban Residents

  • Hong, In-Kyoung;Yun, Hyung Kwon;Jung, Young-Bin;Lee, Sang-Mi
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.1
    • /
    • pp.17-27
    • /
    • 2021
  • Background and objective: This study was conducted as part of research to promote garden diversity and seek sustainable garden management plans, as well as to determine the trends in understanding and use of companion plants as an eco-friendly farming method and provide the results as the basic data for sustainable urban agriculture. Methods: To determine the trends in garden activities, eco-friendly pest control, and use of companion plants, a survey was conducted on 230 urban residents participating in the Urban Agriculture Expert course. 223 copies of the questionnaire were collected excluding missing values, and IBM SPSS statistics Ver. 25 Program was used for frequency analysis, descriptive statistics, and regression analysis. Results: Most of the respondents were female (71.3%), homemakers (26.5%), were in their 50s (29.1%), and had 2 members in the family (27.8%). 164 respondents (73.5%) had experience in gardening, most of them once a week (31.7%) and for self-consumption (55.5%). Both men and women raised crops for safe food production (32.3%), and they most preferred the city garden type (39.9%). For the preparation of nourishment for eco-friendly garden management, most respondents (60.1%) purchased fertilizers from the market. For the reason why eco-friendly pest control is necessary, all respondents except 4 of them (98.2%) responded that it is necessary 'because it affects my health as I eat it (73.5%)', indicating that they still had a high level of interest in health. Only 43.9% of the respondents said that they had heard of companion plants, 89.2% responded that companion plants were effective in eco-friendly management, and 87.4% showed the will to participate in gardening using companion plants in the future. Finally, the regression analysis confirmed that the awareness of companion plants and satisfaction with gardening activities are key variables that increase the intention to participate in gardening activities in the future. Conclusion: Since plants require special care depending on the period and various diseases and insect pests occur, there must be continuous research on companion plants as an eco-friendly farming method. Moreover, by actively using companion plants in urban gardens with the utility value in not only eco-friendly pest control but also in helping plant growth, urban agriculture is expected to be continuously activated and promoted by increasing satisfaction in gardening activities with aesthetic landscaping and pest control.

Test of Larvicidal Effect of Some Commercial Natural Products on Lepidoptran Plutella xylostella and Spodoptera litura Larvae

  • Jeong, Hyung-Uk;Im, Hyun-Hwak;Chang, Sung-Kwon;Paik, Chae-Hoon;Han, Tae-Ho;Kim, In-Seon;Kim, Ik-Soo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.15 no.1
    • /
    • pp.87-91
    • /
    • 2007
  • A diverse kind of environment-friendly agricultural materials(EFAM) for the control of insect pests is on the market. These EFAMs are a part of essential sources for the accomplishment of successful, sustainable, and environment-friendly agriculture. Thus, accurate information of these EFAMs is one that required for the success of environment-friendly agriculture, but, in reality, still appropriate information is absolutely in shortage. In this study, we, therefore, tested the efficacy of commercial EFAMs against two lepidopteran insect larvae, the diamondback moth Plutella xylostella(Lepidoptera: plutellidae) and the tobacco cutworm Spodoptera litura(Lepidoptera: Noctuidae). After the two insect pests were successfully stabilized in indoor environment the larvicidal activity was tested at $24{\pm}1^{\circ}C$, relative humidity(RH) of $60{\pm}5%$, and a photoperiod of 16L:8D, and mortality was determined 48 hrs after EFAMs are treated. The EFAMs that showed more than 90% of larvicidal activity were each six among 16 against both P. xylostella and S. litura and only three of them showed consistent larvicidal activity against both species, signifying species specificity of EFAMs and importance of selection of proper EFAMs depending on target insect pest.

Development of eco-friendly plant protecting agents using a food additive, sodium saccharin for fall webworms, Hyphantria cunea Drury

  • Nguyen Minh Anh Hoang;Yoo-Hee Kim;Hong Hyun Park;Young Ho Koh
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.47 no.2
    • /
    • pp.73-78
    • /
    • 2023
  • Currently, Hyphantira cunea Drury, the fall webworms (FWW), is one of the most severe insect pest for various landscaping trees and mulberry trees. In this study, we investigated whether FWW might be managed by Sodium saccharin (SAC) which is a food additive and not toxic to humans and environment. We found that FWW larvae treated with various concentrations of SAC showed dose-dependent delayed development and low survival rates. The lethal-concentration 50% of FWW larvae to SAC was 0.03 M. We also confirmed that SAC can be used to control FWW larvae attacking mulberry trees in the field. Compared to not-treated or tap-water-spraying control groups, SAC-spraying groups showed significantly higher mortality rates of FWW larvae (56.2%). Thus, SAC can be used for control FWW larvae in mulberry trees.

Current Status and Future Directions of Pheromone Research on Orchard Pests in Korea (과수해충 페로몬 연구의 현황과 향후 방향)

  • Yang, Chang Yeol
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.51-62
    • /
    • 2022
  • Numerous insect pests threaten the Korean orchard industry through feeding on various tissues of fruit trees. Generally, the control of economically important orchard pests is based on the use of chemical insecticides. Owing to growing concerns regarding the environmental and human health effects of insecticides, environment-friendly pest control strategies are urgently needed. Pheromones of orchard pests could lead to an environmentally safe control system based on mating disruption or mass trapping. This review summarizes the functions and compounds of known pheromones from 51 orchard pests in Korea. The pheromones identified to date from 14 species in the families Miridae, Aphididae, Diaspididae, Pseudococcidae, Rutelidae, Cecidomyiidae, and Eurytomidae and 26 species in the order Lepidoptera are female-produced sex pheromones that attract only males. In contrast, all known examples for 11 species in the families Alydidae, Pentatomidae, Thripidae and Cerambycidae are male-produced aggregation pheromones that attract both sexes. Research on pheromones in new pests, kairomones in key orchard pests, mating disruption dispensers to generate prolonged release of the pheromones, and trap design and trap location for mass trapping will be required for the expanded use of pheromones and other semiochemicals in orchard pest management in the future.

Effects of Light Trap Structure and Lamp Type on the Attraction of Chestnut Pests in an Orchard (밤재배원에서 유살등 구조 및 램프의 종류가 해충 유인력에 미치는 영향)

  • Kim, Young-Jae;Kim, Hyun Kyung;Kim, Gil-Hah
    • Korean journal of applied entomology
    • /
    • v.53 no.3
    • /
    • pp.217-223
    • /
    • 2014
  • The effects of insect capture were studied in a chestnut orchard using three different light traps (A, B, and C type) with various lamps. The mercury lamp trap captured 125 insect species, out of which 115 were chestnut pests. The B and C type light traps, comprising a Dulux-EL white lamp, were examined for their capturing ability. The type B trap attracted Coleopteran insects (83%), while type C captured Lepidopteran insects (73%). The mercury clarity lamp along with the type B light trap was most effective in attracting Curculio sikkimensis adults (mean, 9.8 adults), while the Dulux-EL lamp captured the highest number of Dichocrocis punctiferalis adults (mean, 10.2 adults) using the type C light trap. These results suggest that selection of the appropriate types of light traps and lamps based on the target pest species is critical in ensuring effective and eco-friendly control of the pest population.

Soil Application of Metarhizium anisopliae JEF-314 Granules to Control, Flower Chafer Beetle, Protaetia brevitarsis seulensis

  • Kim, Sihyeon;Kim, Jong Cheol;Lee, Se Jin;Lee, Mi Rong;Park, So Eun;Li, Dongwei;Baek, Sehyeon;Shin, Tae Young;Gasmi, Laila;Kim, Jae Su
    • Mycobiology
    • /
    • v.48 no.2
    • /
    • pp.139-147
    • /
    • 2020
  • Root-feeding Scarabaeidae, particularly white grubs are considered among the most harmful coleopteran insect pests in turfgrass. In this work, sixteen entomopathogenic fungal species were assayed against flower chafer beetle, Protaetia brevitarsis (Coleoptera: Scarabaeidae) and Metarhizium anisopliae JEF-314 showed high virulence. The control ability of the isolate JEF-314 has been in detail tested for a model insect flower chafer beetle. Further analyses showed insect stage-dependent virulence where the fungal virulence was the highest against smaller instar larvae. Additionally, we confirmed that millet-based solid cultured granule was effective against the soil-dwelling larval stage. The isolate also showed a similar ability for a representative pest (Popillia spp.) in laboratory conditions. Our results clearly suggest a high potential of M. anisopliae JEF-314 to control the flower chafer beetle, possibly resulting in controlling of root-feeding white grubs in turfgrass. Based on the insect life cycle and susceptibility to the fungus, late spring and summer time would be the optimum time to apply JEF-314 granules for an effective control. Further characterization of the efficacy of the fungus under field conditions against the Scarabaeidae beetles might provide an efficient tool to control this beetle in an environment-friendly way.