DOI QR코드

DOI QR Code

Efficacy of Light and Odor Barriers in Controlling Insect Pest Evasion by Modulating Light and Gas Environments

  • Jahyun Na (Institute of Life Science and Natural Resources, Korea University) ;
  • Jae Hun Yoo (Sihwa Factory 101, SPC SAMLIP Co., ltd.) ;
  • Yong-Hoo Kwon (R&D Center, DSE Co., ltd.) ;
  • Sanghun Yeo (HIPOS R&C Co., Ltd.) ;
  • Gyung Deok Han (Biology and Agriculture Lab., Department of Practical Arts Education, Cheongju National University of Education)
  • Received : 2024.06.26
  • Accepted : 2024.07.23
  • Published : 2024.08.31

Abstract

Insect pests are a significant threat to stored crops and can lead to considerable economic losses and reduced crop quality. Traditional pest control methods often involve chemical treatments, which have adverse environmental and health effects. This study evaluated the effectiveness of controlling the environment using LED lighting and plant-derived odor barriers as a dual strategy for insect pest control. The storage environment was altered using LED lights that emitted specific wavelengths (580-585 nm) and by reducing other wavelengths (300-500 nm). This light environment was combined with an insect odor barrier derived from Cinnamomum verum, Illicium verum, and Artemisia annua, and their duel impact on the behavior and frequency of insect pests under real storage conditions was determined. The findings revealed significant changes in the frequencies of various insect orders, indicating differential responses to light wavelengths and odor barriers. Notably, the introduction of an anti-insect light and odor barrier environment reduced Diptera and Hemiptera frequencies, which could potentially reduce pest intrusion. The results underscore the potential use of integrated light and odor barriers as a noninvasive and environmentally friendly approach to pest management. This study identifies the specific wavelengths and odor combinations that effectively deter insect pests and contribute to the development of more efficient and sustainable pest control methods. It also highlights the importance of understanding insect behavior and frequency changes in response to novel deterrent strategies.

Keywords

References

  1. Aungtikun, J., Soonwera, M., Sittichok, S., 2021, Insecticidal synergy of essential oils from Cymbopogon citratus (Stapf.), Myristica fragrans (Houtt.), and Illicium verum Hook. f. and their major active constituents, Ind. Crop. Prod., 164, 113386. 
  2. Callahan, P., 1965, Far infra-red emission and detection by night-flying moths, Nature, 206, 1172-1173. 
  3. Cohnstaedt, L., Gillen, J. I., Munstermann, L. E., 2008, Light-emitting diode technology improves insect trapping, JAMCA, 24, 331. 
  4. Deb, M., Kumar, D., 2020, Bioactivity and efficacy of essential oils extracted from Artemisia annua against Tribolium casteneum (Herbst. 1797) (Coleoptera: Tenebrionidae): An Eco-friendly approach, Ecotoxicol. Environ. Saf., 189, 109988. 
  5. Deichmann, J. L., Ampudia Gatty, C., Andia Navarro, J. M., Alonso, A., Linares-Palomino, R., Longcore, T., 2021, Reducing the blue spectrum of artificial light at night minimises insect attraction in a tropical lowland forest, Insect Conserv. Diver., 14, 247-259. 
  6. Fabian, S. T., Sondhi, Y., Allen, P. E., Theobald, J. C., Lin, H. T., 2024, Why flying insects gather at artificial light, Nat. Commun., 15, 689. 
  7. Gardiner, B., 1995, The very first light-trap, 1565, Ent. Rec. J. Var., 107, 45-46. 
  8. Grubisic, M., van Grunsven, R. H., 2021, Artificial light at night disrupts species interactions and changes insect communities, Curr. Opin. Insect Sci., 47, 136-141. 
  9. Hsiao, H. S., 1973, Flight paths of night-flying moths to light, J. Insect Physiol., 19, 1971-1976. 
  10. Juddin, A. S. S., Ngah, N., Umar, R., Asante, K., Abdullahi, M. G., 2023, A Review influence of light on insect activity and behaviour: Sustainable lighting and light pollution, JSSM, 18, 231-247. 
  11. Kim, K. N., Huang, Q. Y., Lei, C. L., 2019, Advances in insect phototaxis and application to pest management: A Review, Pest Manag. Sci., 75, 3135-3143. 
  12. Liu, H., Gao, Z., Deng, S. Z., Cao, F. Q., Lu, Y. Y., 2018, The photokinesis of oriental fruit flies, B. actrocera dorsalis, to LED lights of various wavelengths, Entomol. Exp. Appl., 166, 102-112. 
  13. Liu, Q. H., Zhao, M. F., Wu, Y. Q., 2022, Effects of Spectral Light Factors on the Phototactic Response of Frankliniella occidentalis (Thysanoptera: Thripidae) Using LED Source, J. Nanoelectron. Optoelectron., 17, 1299-1307. 
  14. Mazokhin-Porshnyakov, G., 1960, Why insects fly to light by night, Revue d'Entomologie de l'URSS, 39, 52-58. 
  15. Narayanankutty, A., Kunnath, K., Alfarhan, A., Rajagopal, R., Ramesh, V., 2021, Chemical composition of Cinnamomum verum leaf and flower essential oils and analysis of their antibacterial, insecticidal, and larvicidal properties, Molecules, 26, 6303. 
  16. Park, J. H., Lee, H. S., 2017, Phototactic behavioral response of agricultural insects and stored-product insects to light-emitting diodes (LEDs), App. Biol. Chem., 60, 137-144. 
  17. Ramamurthy, V. V., Akhtar, M. S., Patankar, N. V., Menon, P., Kumar, R., Singh, S. K., Ayri, S., Parveen, S., Mittal, V., 2010, Efficiency of different light sources in light traps in monitoring insect diversity, Mun. Ent. Zool., 5, 109-114. 
  18. Robinson, H., Robinson, P., 1950, Some notes on the observed behaviour of Lepidoptera in flight in the vicinity of light-sources together with a description of a light-trap designed to take entomological samples, Entomologist's Gazette, 1, 3-15. 
  19. Sotthibandhu, S., Baker, R., 1979, Celestial orientation by the large yellow underwing moth, Noctua pronuba L, Anim. Behav., 27, 786-800. 
  20. Wakefield, A., Broyles, M., Stone, E. L., Jones, G., Harris, S., 2016, Experimentally comparing the attractiveness of domestic lights to insects: Do LED s attract fewer insects than conventional light types?, Eco. Evo., 6, 8028-8036. 
  21. Wilcoxon, F., 1945, Individual comparisons by ranking methods, Biometrics Bull., 1, 80-83.