• Title/Summary/Keyword: environment units

Search Result 1,005, Processing Time 0.025 seconds

Development of Simulation Architecture Framework for Simulation Based Acquisition (모의기반획득을 위한 시뮬레이션 아키텍처 프레임워크 개발)

  • Cho, Kyu-Tae;Shim, Jun-Yong;Lee, Yong-Heon;Lee, Seung-Young;Kim, Sae-Hwan
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.3
    • /
    • pp.81-89
    • /
    • 2010
  • Recent modeling and simulation technology is being used in various fields. Especially in the field of military, Simulation-Based Acquisition (SBA) is recognized as a essential policy. To effectively carry out SBA, modeling and simulation techniques should be applied in the whole life-cycle for the weapon system development, and simulation architecture framework which provides easily reusable and interoperability is needed. Through reusability and interoperability, the costs of constructing the integrated collaborate environment for simulation based acquisition can be minimized. In this study, we define requirements, issues for enhancing reusability and interoperability, and propose simulation framework as a solution of the problem including structural design. Proposing simulation framework provides common functions for producing simulator as reusable units and easily changeable structure on user's purpose. In addition, we provide the result for applying simulation framework to our project.

Applicability of Next-Generation Sequencing for Analysis of Stomach Contents in Fish (Next-Generation Sequencing을 활용한 어류 위 내용물 분석의 적용 가능성)

  • Chae-Jin Park;Seonbin Yun;Hyeon-Sik Lee;Seoyun Jang;Kang-Hui Kim;Donghyun Hong;Gea-Jae Joo
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.1
    • /
    • pp.104-125
    • /
    • 2023
  • The predator-prey interaction in freshwater ecosystems is a crucial area in the ecological study field and one of example to find such interaction is to investigate stomach contents. However, traditional method through visual inspection often induce misidentification, as it depends critically on intactness of physically visible data. In this study, we utilized Next-Generations Sequencing (NGS) technology to test the applicability stomach content analysis and overcome such limitation. NGS was applied to analyze the stomach contents of the Hemibarbus labeo, Tachysurus fulvidraco, and Plecoglossus altivelis collected in the lower part of Nakdong River. As a result, T. fulvidraco had a higher number of Animalia operational taxonomic units (OTUs) intake rate than H. labeo. At the same time, P. altivelis had higher number of Plantae OTUs intake rate than T. fulvidraco and higher Protozoa OTUs intake rate than H. labeo respectively. Therefore, NGS technology application enable to overcome traditional method's limitation and discover hidden interspecific interaction which can further be used in appropriate habitat assessment.

Local and regional steppe vegetation palatability at grazing hotspot areas in Mongolia

  • Amartuvshin, Narantsetsegiin;Kim, Jaebeom;Cho, Nanghyun;Seo, Bumsuk;Kang, Sinkyu
    • Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.76-84
    • /
    • 2022
  • Background: Climate and livestock grazing are key agents in determining current Mongolian steppe vegetation communities. Together with plant coverage or biomass, palatability of steppe community is regarded as a useful indicator of grassland degradation, in particular, at grazing hotspots in arid and semi-arid grasslands. This study analyzed relationships between livestock grazing pressure and steppe vegetation palatability at three summer pastures with different aridity (dry, xeric, and mesic) and livestock numbers (1,100, 1,800, and 4,100 sheep units, respectively). At each site, it was surveyed coverage, biomass, and species composition of different palatability groups (i.e., palatable [P], impalatable [IP], and trampling-tolerant [TT]) along a 1-km transect from grazing hotspots (i.e., well) in every July from 2015 to 2018. Results: In results, total vegetation coverage increased with wetness, 7 times greater at mesic site than dry one in averages (33.1% vs. 4.5%); biomass was 3 times higher (47.1 g m-2 vs. 15.7 g m-2). Though P was the dominant palatability group, the importance of IP in total coverage increased with aridity from mesic (0.6%) to dry (40.2%) sites. Whereas, TT increased with livestock numbers across sites. Locally, IP was observed more frequently near the wells and its spatial range of occurrence becomes farther along the transects with aridity across sites from mesic (< 100 m) to dry (< 700 m from the well). Conclusions: Our results showed that the importance of IP and its spatial distribution are different at both local and regional scales, indicating that the palatability parameters are sensitive to discern balance between selective-grazing demand and climate-driven foraging supply in Mongolian rangelands.

Biological soil crusts impress vegetation patches and fertile islands over an arid pediment, Iran

  • Sepehr, Adel;Hosseini, Asma;Naseri, Kamal;Gholamhosseinian, Atoosa
    • Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.31-40
    • /
    • 2022
  • Background: Plant vegetation appears in heterogeneous and patchy forms in arid and semi-arid regions. In these regions, underneath the plant patches and the empty spaces between them are covered by biological soil crusts (moss, lichen, cyanobacteria, and fungi). Biological soil crusts lead to the formation and development of fertile islands in between vegetation patches via nitrogen and carbon fixation and the permeation of runoff water and nutrients in the soil. Results: The present study has investigated the association of biological soil crusts, the development of fertile islands, and the formation of plant patches in part of the Takht-e Soltan protected area, located in Khorasan Razavi Province, Iran. Three sites were randomly selected as the working units and differentiated based on their geomorphological characteristics to the alluvial fan, hillslope, and fluvial terrace landforms. Two-step systematic random sampling was conducted along a 100-meter transect using a 5 m2 plot at a 0-5 cm depth in three repetitions. Fifteen samplings were carried out at each site with a total of 45 samples taken. The results showed that the difference in altitude has a significant relationship with species diversity and decreases with decreasing altitude. Results have revealed that the moisture content of the site, with biocrust has had a considerable increase compared to the other sites, helping to form vegetation patterns and fertile islands. Conclusions: The findings indicated that biological crusts had impacted the allocation of soil parameters. They affect the formation of plant patches by increasing the soil's organic carbon, nitrogen, moisture and nutrient content provide a suitable space for plant growth by increasing the soil fertility in the inter-patch space.

Design of educational platform for strategic job plannning (직업준비를 위한 전략적 학습지원 교육플랫폼의 설계)

  • Jung, Myungee;Jung, Myungsun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.272-275
    • /
    • 2022
  • Large-scale online platforms such as MOOCs-Massive Open Online Courses, which provide a variety of educational contents, have provided a learning environment that allows students to freely access and learn anytime and anywhere. Currently, the proportion of online lectures and home-based learning is increasing, and portfolio or experience-based learning such as bootcamp, field activities, and team project-based group learning are also being actively carried out for educational outcomes. At present, interest in nano or microdegree focused on core technology in units of hours or credits is increasing significantly because such strategic intensive education enables effective learning in terms of continuity and efficiency of education. In an era of large changes in job market due to the reorganization of the industrial structure by new technologies, intensive education in specialized new technology fields such as smart mobility, big data, and artificial intelligence is much more conducive to finding a job. With this reason it is attracting attention as an alternative to lifelong learning are receiving In this paper we propose an educational platform that can efficiently and effectively support the purpose learning for the personalized microdegree education in the online learning era.

  • PDF

Evaluation of Microbial Analysis and Application of Reduction Technology in a Dairy Factory (목장형 유가공장의 미생물 분석 및 저감기술 적용 평가)

  • Jong-Hui Kim;Eun-Seon Lee;Bu-Min Kim;Jun-Sang Ham;Mi-Hwa Oh
    • Journal of Dairy Science and Biotechnology
    • /
    • v.41 no.4
    • /
    • pp.203-210
    • /
    • 2023
  • Bacterial contamination negatively affects the quality, functionality, and safety of dairy products. Adherent populations of bacteria, referred to as biofilms, grow on the surfaces of dairy processing equipment and are the primary cause of dairy contamination. In addition, microorganisms present in the farm environment and dairy factory can contaminate the Clear-In-Place (CIP) line through raw milk transport pipes; therefore, exhaustive management is required. In dairy manufacturing facilities, biofilm formation is controlled using CIP systems that primarily require sodium hydroxide and nitric acid. However, the leakage or incomplete removal of these potently active compounds can be harmful to humans. In the present study, we compared the eradication of Escherichia coli and other bacteria using commercially available combinations of sodium hypochlorite (NaClO) and citric acid, which are recognized by the Korean Ministry of Food and Drug Safety (MFDS) as food disinfectants. When considered in the CIP system of the field manufacturing process, E. coli was not detected (compared to detection before treatment), and other bacteria were detected at 0-32 culture-forming units (CFU)/cm2. The residual amount of chlorine ions after CIP treatment was similar to that in tap water, and there was no significant difference in the overall components of the fermented dairy products. Therefore, the NaClO/citric acid CIP system can be safely applied in dairy manufacturing processes.

Enhancing Acute Kidney Injury Prediction through Integration of Drug Features in Intensive Care Units

  • Gabriel D. M. Manalu;Mulomba Mukendi Christian;Songhee You;Hyebong Choi
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.434-442
    • /
    • 2023
  • The relationship between acute kidney injury (AKI) prediction and nephrotoxic drugs, or drugs that adversely affect kidney function, is one that has yet to be explored in the critical care setting. One contributing factor to this gap in research is the limited investigation of drug modalities in the intensive care unit (ICU) context, due to the challenges of processing prescription data into the corresponding drug representations and a lack in the comprehensive understanding of these drug representations. This study addresses this gap by proposing a novel approach that leverages patient prescription data as a modality to improve existing models for AKI prediction. We base our research on Electronic Health Record (EHR) data, extracting the relevant patient prescription information and converting it into the selected drug representation for our research, the extended-connectivity fingerprint (ECFP). Furthermore, we adopt a unique multimodal approach, developing machine learning models and 1D Convolutional Neural Networks (CNN) applied to clinical drug representations, establishing a procedure which has not been used by any previous studies predicting AKI. The findings showcase a notable improvement in AKI prediction through the integration of drug embeddings and other patient cohort features. By using drug features represented as ECFP molecular fingerprints along with common cohort features such as demographics and lab test values, we achieved a considerable improvement in model performance for the AKI prediction task over the baseline model which does not include the drug representations as features, indicating that our distinct approach enhances existing baseline techniques and highlights the relevance of drug data in predicting AKI in the ICU setting.

Study on Automation of Comprehensive IT Asset Management (포괄적 IT 자산관리의 자동화에 관한 연구)

  • Wonseop Hwang;Daihwan Min;Junghwan Kim;Hanjin Lee
    • Journal of Information Technology Services
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • The IT environment is changing due to the acceleration of digital transformation in enterprises and organizations. This expansion of the digital space makes centralized cybersecurity controls more difficult. For this reason, cyberattacks are increasing in frequency and severity and are becoming more sophisticated, such as ransomware and digital supply chain attacks. Even in large organizations with numerous security personnel and systems, security incidents continue to occur due to unmanaged and unknown threats and vulnerabilities to IT assets. It's time to move beyond the current focus on detecting and responding to security threats to managing the full range of cyber risks. This requires the implementation of asset Inventory for comprehensive management by collecting and integrating all IT assets of the enterprise and organization in a wide range. IT Asset Management(ITAM) systems exist to identify and manage various assets from a financial and administrative perspective. However, the asset information managed in this way is not complete, and there are problems with duplication of data. Also, it is insufficient to update of data-set, including Network Infrastructure, Active Directory, Virtualization Management, and Cloud Platforms. In this study, we, the researcher group propose a new framework for automated 'Comprehensive IT Asset Management(CITAM)' required for security operations by designing a process to automatically collect asset data-set. Such as the Hostname, IP, MAC address, Serial, OS, installed software information, last seen time, those are already distributed and stored in operating IT security systems. CITAM framwork could classify them into unique device units through analysis processes in term of aggregation, normalization, deduplication, validation, and integration.

A Study on the Analysis and Implementation of Teaching-Learning Methods for the Curriculum in the Generative AI Era : Focusing on the Particles and Waves of Light Unit in Science (생성형 AI 시대의 교과 교육과정을 위한 교수-학습 방법 분석 및 실행 방안 연구 : 과학과 빛의 입자와 파동 단원을 중심으로)

  • Park Somin;Hong Hoojo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.20 no.3
    • /
    • pp.37-59
    • /
    • 2024
  • The current application of Generative AI in education requires enhancing skills and competencies for both instructors and students in the Age of Digital Formation. The knowledge, skills, and attitudes necessary for individualized education should be cultivated in schools, along with the ability to develop AI-compatible learning resources. Today's educational environment aligns with the demands of the Generative AI Era. Consequently, there is a need for an educational system that promotes critical thinking and creativity while connecting students to the global context. This study examined the teaching and learning processes, along with educational exploration, to understand the properties of light particles and waves within a competency-based science curriculum. The analysis and research findings aimed at devising a competency-based teaching-learning method for students' understanding of light particles and waves are as follows: First, unit analysis confirmed the significance of competency-oriented education and facilitated the structuring of units on light and waves. Second, qualitative content analysis outlined the procedures for applying conceptual knowledge and functions in experiential learning, as well as the process of feedback delivery. Third, the study highlighted the need for a meticulous approach to inducing problem recognition through inquiry and discussion activities, ensuring that students, when exploring and recognizing problems independently, do not develop misconceptions.

A Study on the Mission Engineering Applications for Improving the Defense Planning Management System -Focusing on the Requirement Planning and Acquisition - (국방기획관리체계 개선을 위한 임무공학 적용방안에 관한연구-소요기획과 획득체계를 중심으로-)

  • Sang-Seung Lee;Keun-Ha Choi;Seung-Hyeon Hwang
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.5
    • /
    • pp.181-188
    • /
    • 2024
  • This study explores the application of Mission Engineering, a concept and methodology adopted by the U.S. Department of Defense, to the Republic of Korea's defense planning and management system in response to the rapidly changing security environment. Through literature review, analysis of prior research and case studies, and focus group interviews (FGI), key elements of Mission Engineering were derived. Based on these findings, improvements for the ROK military's requirements planning and rapid acquisition system were proposed. As a result, three critical elements for applying Mission Engineering were identified: operational concepts, required capabilities, and acquisition. Suggestions for improvement include transitioning to a mission-oriented requirements planning system, applying Mission Engineering methodology when formulating operational concepts, supporting decision-making to shorten acquisition timelines, allocating budgets for rapid acquisition, and strengthening the capabilities of requirement-setting units. This study confirms the necessity and applicability of Mission Engineering and is expected to serve as a foundation for the future development of the defense planning and management system.