• Title/Summary/Keyword: environment modeling

Search Result 3,494, Processing Time 0.025 seconds

A Study on an Efficient Environment for Web Applications Development (웹 어플리케이션의 효율적인 개발 환경 구축에 관한 연구)

  • Kang, Byeong-Do;Lee, Mi-Kyong
    • The KIPS Transactions:PartD
    • /
    • v.10D no.3
    • /
    • pp.489-500
    • /
    • 2003
  • Due to the rapid growth of Internet, modern software applications must support many web-based functionalities than traditional software applications. These web-based functional supports increase the complexity of software architecture and the cost of software development. Therefore, the development of an efficient environment that web characteristics are well reflected is the most important. In this thesis, we have presented an efficient environment for development of web applications. For the presented environment, after considering the web characteristics, we defined a Process for web applications and modeling environment. The Presented environment has three main functions : $\circled1$ it Provides a modeling environment for design of web-based applications, $\circled2$ it has a modeling language called WML(web-application modeling language), $\circled3$ it automatically extracts web pages from diagrams. As a result, using the three main functions of the presented environment, we can easily design, develop, and maintain the web applications.

Future Development Direction of Water Quality Modeling Technology to Support National Water Environment Management Policy (국가 물환경관리정책 지원을 위한 수질모델링 기술의 발전방향)

  • Chung, Sewoong;Kim, Sungjin;Park, Hyungseok;Seo, Dongil
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.621-635
    • /
    • 2020
  • Water quality models are scientific tools that simulate and interpret the relationship between physical, chemical and biological reactions to external pollutant loads in water systems. They are actively used as a key technology in environmental water management. With recent advances in computational power, water quality modeling technology has evolved into a coupled three-dimensional modeling of hydrodynamics, water quality, and ecological inputs. However, there is uncertainty in the simulated results due to the increasing model complexity, knowledge gaps in simulating complex aquatic ecosystem, and the distrust of stakeholders due to nontransparent modeling processes. These issues have become difficult obstacles for the practical use of water quality models in the water management decision process. The objectives of this paper were to review the theoretical background, needs, and development status of water quality modeling technology. Additionally, we present the potential future directions of water quality modeling technology as a scientific tool for national environmental water management. The main development directions can be summarized as follows: quantification of parameter sensitivities and model uncertainty, acquisition and use of high frequency and high resolution data based on IoT sensor technology, conjunctive use of mechanistic models and data-driven models, and securing transparency in the water quality modeling process. These advances in the field of water quality modeling warrant joint research with modeling experts, statisticians, and ecologists, combined with active communication between policy makers and stakeholders.

Wind flow simulations in idealized and real built environments with models of various level of complexity

  • Abdi, Daniel S.;Bitsuamlak, Girma T.
    • Wind and Structures
    • /
    • v.22 no.4
    • /
    • pp.503-524
    • /
    • 2016
  • The suitability of Computational Fluid Dynamics (CFD) simulations on the built environment for the purpose of estimating average roughness characteristics and for studying wind flow patterns within the environment is assessed. Urban models of various levels of complexity are considered including an empty domain, array of obstacles arranged in regular and staggered manners, in-homogeneous roughness with multiple patches, a semi-idealized built environment, and finally a real built environment. For each of the test cases, we conducted CFD simulations using RANS turbulence closure and validated the results against appropriate methods: existing empirical formulas for the homogeneous roughness case, empirical wind speed models for the in-homogeneous roughness case, and wind tunnel tests for the semi-idealized built environment case. In general, results obtained from the CFD simulations show good agreement with the corresponding validation methods, thereby, giving further evidence to the suitability of CFD simulations for built environment studies consisting of wide-ranging roughness. This work also provides a comprehensive overview of roughness modeling in CFD-from the simplest approach of modeling roughness implicitly through wall functions to the most elaborate approach of modeling roughness explicitly for the sake of accurate wind flow simulations within the built environment.

DEVSim++ - NS2 Interoperating Environment for Protocol Evaluation (프로토콜 평가를 위한 DEVSim++ 와 NS2 의 연동 환경)

  • 김회준;김탁곤
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2002.05a
    • /
    • pp.253-258
    • /
    • 2002
  • This paper proposes a methodology for development of protocol models. The methodology attempts to employ two modeling environments in models development, NS2 and DEVSim++, which will interoperate during simulation. NS2 is a widely used network simulator in protocol research, which employs an informal modeling approach. Within the approach time and state information of protocol models are not explicitly described, thus being hard to validate model. On the other hand the DEVS formalism is a mathematical framework for modeling a discrete event system in a hierarchical, modular manner. In DEVS, model's time and state information is described explicitly, By using DEVS formalism, models can easily be validated and errors in the modeling stage can be reduced. However, the DEVS simulator, DEVSim++, supports a small amount of models library which are required to build simulation models of general communication network. Although NS2 employs an informal modeling approach and models validation is difficult, it supports abundant models library validated by experimental users. Thus, combination of DEVS models and NS2 models may be an effective solution for network modeling. Such combination requires interoperation between DEVSim++ simulator and NS2 simulator. This paper develops an environment for such interoperation. Correctness and effectiveness of the implemented interoperation environment have been validated by simulation of UDP and TCP models.

  • PDF

Performance Analysis of Electricity Demand Forecasting by Detail Level of Building Energy Models Based on the Measured Submetering Electricity Data (서브미터링 전력데이터 기반 건물에너지모델의 입력수준별 전력수요 예측 성능분석)

  • Shin, Sang-Yong;Seo, Dong-Hyun
    • Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
    • /
    • v.12 no.6
    • /
    • pp.627-640
    • /
    • 2018
  • Submetering electricity consumption data enables more detail input of end use components, such as lighting, plug, HVAC, and occupancy in building energy modeling. However, such an modeling efforts and results are rarely tried and published in terms of the estimation accuracy of electricity demand. In this research, actual submetering data obtained from a university building is analyzed and provided for building energy modeling practice. As alternative modeling cases, conventional modeling method (Case-1), using reference schedule per building usage, and main metering data based modeling method (Case-2) are established. Detail efforts are added to derive prototypical schedules from the metered data by introducing variability index. The simulation results revealed that Case-1 showed the largest error as we can expect. And Case-2 showed comparative error relative to Case-3 in terms of total electricity estimation. But Case-2 showed about two times larger error in CV (RMSE) in lighting energy demand due to lack of End Use consumption information.

Research of Virtual Environment and Sensor Modeling for Performance Assessment of Autonomous Navigation System (자율주행 성능분석을 위한 가상환경 및 센서 모델링 기법 연구)

  • Ahn, Myung-Kil;Lee, Seok-Jae;Park, Yong-Woon;Ko, Jung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.10-15
    • /
    • 2008
  • This paper describes virtual environment and sensor modeling to analyze and verify the performance of autonomous navigation system. Virtual synthetic environment is constructed with 6 subgroups which cover from virtual environment construction to virtual sensor modeling of real systems. This research is applied to validate and assess performance of concerned algorithms and complex functions for autonomous navigation system based on virtual environment.

WeblME: An Web-based Integrated Modeling Environment for Multi-facetted Model Representation and Management

  • Kim, Hyoung-Do;Kim, Jong-Woo;Park, Sung-Joo
    • Management Science and Financial Engineering
    • /
    • v.5 no.1
    • /
    • pp.27-49
    • /
    • 1999
  • WebME is an Web-based integrated modeling environment that implements a multi-facetted modeling approach to mathematical model representation and management. Key features of WebME include the following: (i) sharing of modeling knowledge on the Web, (ii) a user-friendly interface for creating, maintaining, and solving models, (iii) independent management of mathematical models from conceptual models, (iv) object-oriented conceptual blackboard concept, (v) multi-facetted mathematical modeling modeling, and (vi) declarative representation of mathematical knowledge. This paper presents details of design and implementation issues that were encountered in the development of WebME.

  • PDF

Fundamentals of Numerical Modeling of the Mid-latitude Ionosphere

  • Geonhwa Jee
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.1
    • /
    • pp.11-18
    • /
    • 2023
  • The ionosphere is one of the key components of the near-Earth's space environment and has a practical consequence to the human society as a nearest region of the space environment to the Earth. Therefore, it becomes essential to specify and forecast the state of the ionosphere using both the observations and numerical models. In particular, numerical modeling of the ionosphere is a prerequisite not only for better understanding of the physical processes occurring within the ionosphere but also for the specification and forecast of the space weather. There are several approaches for modeling the ionosphere, including data-based empirical modeling, physics-based theoretical modeling and data assimilation modeling. In this review, these three types of the ionospheric model are briefly introduced with recently available models. And among those approaches, fundamental aspects of the physics-based ionospheric model will be described using the basic equations governing the mid-latitude ionosphere. Then a numerical solution of the equations will be discussed with required boundary conditions.

A Study on the Application of a Drone-Based 3D Model for Wind Environment Prediction

  • Jang, Yeong Jae;Jo, Hyeon Jeong;Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.2
    • /
    • pp.93-101
    • /
    • 2021
  • Recently, with the urban redevelopment and the spread of the planned cities, there is increasing interest in the wind environment, which is related not only to design of buildings and landscaping but also to the comfortability of pedestrians. Numerical analysis for wind environment prediction is underway in many fields, such as dense areas of high-rise building or composition of the apartment complexes, a precisive 3D building model is essentially required in this process. Many studies conducted for wind environment analysis have typically used the method of creating a 3D model by utilizing the building layer included in the GIS (Geographic Information System) data. These data can easily and quickly observe the flow of atmosphere in a wide urban environment, but cannot be suitable for observing precisive flow of atmosphere, and in particular, the effect of a complicated structure of a single building on the flow of atmosphere cannot be calculated. Recently, drone photogrammetry has shown the advantage of being able to automatically perform building modeling based on a large number of images. In this study, we applied photogrammetry technology using a drone to evaluate the flow of atmosphere around two buildings located close to each other. Two 3D models were made into an automatic modeling technique and manual modeling technique. Auto-modeling technique is using an automatically generates a point cloud through photogrammetry and generating models through interpolation, and manual-modeling technique is a manually operated technique that individually generates 3D models based on point clouds. And then the flow of atmosphere for the two models was compared and analyzed. As a result, the wind environment of the two models showed a clear difference, and the model created by auto-modeling showed faster flow of atmosphere than the model created by manual modeling. Also in the case of the 3D mesh generated by auto-modeling showed the limitation of not proceeding an accurate analysis because the precise 3D shape was not reproduced in the closed area such as the porch of the building or the bridge between buildings.

Agent-based SAF Modeling Tool for DEVS M&S (DEVS M&S 환경을 위한 에이전트 기반의 SAF 모델링 도구)

  • Shin, Suk-Hoon;Park, Kang-Moon;Lee, Eun-Bog;Chi, Sung-Do;Han, Seung-Jin
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.4
    • /
    • pp.49-55
    • /
    • 2013
  • Recently the CGF/SAF (Computer Generated Force / Semi-Automated Force) technology has been getting attention to deal with the increasing complexity in a DM&S(Defence Modeling and Simulation) environment. OneSAF is one of well-known CGF/SAF systems, however, it is not able to support the DEVS framework which is an advanced discrete event based modeling and simulation environment. Especially, most DM&S systems in Korea has been developed on the basis of the DEVS framework. In this paper, we have proposed the agent-based SAF design methodology and tool for supporting DEVS M&S environment. The proposed SAF modeling tool is divided into two parts; the agent modeling part and SAF modeling part. In the agent modeling environment, the modeler can simply create the agent model by writing down the necessary rules. It also provides the agent testing environment so that the modeler maybe conveniently verify the prescribed agent model. The SAF model is finally created by combing the individual agents based on the pre-defined structure. DM&S engineers will be able to employ our tools and modeling methodology to design the DEVS-based DM&S system to be developed.