• Title/Summary/Keyword: envelope proteins

Search Result 65, Processing Time 0.022 seconds

Development of a Rapid Diagnostic Test Kit to Detect IgG/IgM Antibody against Zika Virus Using Monoclonal Antibodies to the Envelope and Non-structural Protein 1 of the Virus

  • Kim, Yeong Hoon;Lee, Jihoo;Kim, Young-Eun;Chong, Chom-Kyu;Pinchemel, Yanaihara;Reisdorfer, Francis;Coelho, Joyce Brito;Dias, Ronaldo Ferreira;Bae, Pan Kee;Gusmao, Zuinara Pereira Maia;Ahn, Hye-Jin;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.1
    • /
    • pp.61-70
    • /
    • 2018
  • We developed a Rapid Diagnostic Test (RDT) kit for detecting IgG/IgM antibodies against Zika virus (ZIKV) using monoclonal antibodies to the envelope (E) and non-structural protein 1 (NS1) of ZIKV. These proteins were produced using baculovirus expression vector with Sf9 cells. Monoclonal antibodies J2G7 to NS1 and J5E1 to E protein were selected and conjugated with colloidal gold to produce the Zika IgG/IgM RDT kit (Zika RDT). Comparisons with ELISA, plaque reduction neutralization test (PRNT), and PCR were done to investigate the analytical sensitivity of Zika RDT, which resulted in 100% identical results. Sensitivity and specificity of Zika RDT in a field test was determined using positive and negative samples from Brazil and Korea. The diagnostic accuracy of Zika RDT was fairly high; sensitivity and specificity for IgG was 99.0 and 99.3%, respectively, while for IgM it was 96.7 and 98.7%, respectively. Cross reaction with dengue virus was evaluated using anti-Dengue Mixed Titer Performance Panel (PVD201), in which the Zika RDT showed cross-reactions with DENV in 16.7% and 5.6% in IgG and IgM, respectively. Cross reactions were not observed with West Nile, yellow fever, and hepatitis C virus infected sera. Zika RDT kit is very simple to use, rapid to assay, and very sensitive, and highly specific. Therefore, it would serve as a choice of method for point-of-care diagnosis and large scale surveys of ZIKV infection under clinical or field conditions worldwide in endemic areas.

Studies on isolation of rhinopneumonitis virus from Korean horses and its immunogenicity II. Studies on characters and immunogenicity of equine herpesvirus (국내 말로부터 비폐렴바이러스의 분리 및 면역원성에 관한 연구 II. 국내 분리 말 비폐렴바이러스의 특성 및 면역원성 조사)

  • Cho, Gil-jae;Kim, Bong-hwan;Lee, Du-sik;Oh, Moon-you;Ko, Mi-hee
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.4
    • /
    • pp.743-752
    • /
    • 1995
  • The study was carried out to characterize the properties of Korean isolates of EHV from aborted fetuses and determine envelope protein profiles. The results obtained were summarized as follows; 1. Two strains of EHV was isolated from 2 liver samples among 10 aborted fetuses from which the virus isolation was attempted. 2. Morphological and some enzymatic properties of the Korean isolates of EHV which was designated as $LC_1$ and $LC_2$ was identical to those of a reference strain of Australia-N of EHV-1. The Korean isolates of EHV could be propagated on ED cell culture and they formed typical plaques 1 to 2 days after infection in the ED cells from which typical cuboidal particles of 150~170 nm diameter herpesvirus were observed. The virus could be detected specifically from neucleus and cytoplasm of infected cells by flourescent antibody technique using FITC labelled anti-Aust IV(EHV-1) antiserum. The Korean isolates, $LC_1$ and $LC_2$ were specifically neutralized by anti Aust IV antiserum and reacted positively to CELISA. 3. The structural polypeptides of purified enveloped virions of $LC_1$ and $LC_2$ isolates of EHV were determined by SDS-polyacrylamide gel electrophoresis to identify the envelope glycoproteins. $LC_1$ and $LC_2$ strains revealed 14 glycoproteins ranging in molecular weight from 190 kD to 31 kD while 17 structural proteins of Aust IV(EHV-1), of which 14 were identical to those of $LC_1$ and $LC_2$, were identified. Upon immunoblotting by rabbit antiserum against EHV isolates and EHV-1(Aust IV), 4 immunogenic proteins of $LC_1$ and $LC_2$ were 135 kD, 88 kD, 64 kD and 59 kD, of which 135 kD, 88 kD and 64 kD proteins were also found in Aust IV(EHV-1).

  • PDF

Proteomic profiles and ultrastructure of regenerating protoplast of Bryopsis plumosa (Chlorophyta)

  • Klochkova, Tatyana A.;Kwak, Min Seok;Kim, Gwang Hoon
    • ALGAE
    • /
    • v.31 no.4
    • /
    • pp.379-390
    • /
    • 2016
  • When a multinucleate cell of Bryopsis plumosa was collapsed by a physical wounding, the extruded protoplasm aggregated into numerous protoplasmic masses in sea water. A polysaccharide envelope which initially covered the protoplasmic mass was peeled off when a cell membrane developed on the surface of protoplast in 12 h after the wounding. Transmission electron microscopy showed that the protoplasmic mass began to form a continuous cell membrane at 6 h after the wounding. The newly generated cell membrane repeated collapse and rebuilding process several times until cell wall developed on the surface. Golgi bodies with numerous vesicles accumulated at the peripheral region of the rebuilding cell at 24 h after the wounding when the cell wall began to develop. Several layers of cell wall with distinctive electron density developed within 48-72 h after the wounding. Proteome profile changed dramatically at each stage of cell rebuilding process. Most proteins, which were up-regulated during the early stage of cell rebuilding disappeared or reduced significantly by 24-48 h. About 70-80% of protein spots detected at 48 h after the wounding were newly appeared ones. The expression pattern of 29 representative proteins was analyzed and the internal amino acid sequences were obtained using mass spectrometry. Our results showed that a massive shift of gene expression occurs during the cell-rebuilding process of B. plumosa.

Expression of Pseudorabies Virus (PRV) Glycoproteins gB, gC and gD using Bacterial Expression System

  • Yun, Bit-Na-Rae;Bae, Sung-Min;Lee, Jun-Beom;Kim, Hee-Jung;Woo, Soo-Dong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.23 no.1
    • /
    • pp.147-153
    • /
    • 2011
  • The Pseudorabies (PR), also called Aujeszky's disease (AD), is an infectious viral disease caused by an alpha herpes virus and has domestic and wild pigs, as well as a wide range of domestic and wild animals, as the natural host. Pseudorabies virus (PRV) virions contain several envelope glycoproteins. Among them, gB, gC and gD are regarded as the major immunogenic proteins. We expressed these glycoproteins using the bacterial expression system and analyzed recombinant proteins. Expression of glycoproteins gC and gD were observed on SDS-PAGE or Western blot analysis, but gB was not. Optimal concentration of IPTG and inducing time were determined as 1.0 mM and 4 h, respectively, for the expression of both gC and gD in E. coli. A sodium dodecyl sulfate (SDS) was the most efficient detergent in solubilizing insoluble recombinant protein.

Gene expression of feline leukemia virus(FeLV) in cat kidney cells with radioimmunoassay using beta-emission of $^{131}I$ (요오드 131$^{131}I$의 beta-emission을 이용한 면역방사성표지법에 의한 feline leukemia virus의 유전자 발현에 관한 연구)

  • 박만훈;노현모
    • Korean Journal of Microbiology
    • /
    • v.21 no.2
    • /
    • pp.61-70
    • /
    • 1983
  • Synchronized cat kidney cells chronically infected with feline leukemia virus (FeLV) were used to study virus production, the synthesis of group specific antigen (gag) and envelope (env) proteins, the expression of env protein on the cell surface during the cell cycle, and the stability of viral RNA. As detecting method, we developed the radioimmunoassay (RIA) system using beta-emission of $^{131}I$ and demonstrated the validity of this system by comparison with routine RIA system using gamma-emission of $^{125}I$. The produced virus was analysed by developed RIA interval was determined by measuring reverse transcriptase activity. The results show that infected cells produce the complete virus particle containing products of gag, env and pol genes of FeLV, and maximum virus production occurs during mitosis of synchronized cells. Labeling of the cell surface of synchronized cells with $^{131}I$ shows that the amount of $gp70^{env}$ on the cell surface parallels cellular gorwth. Therefore, the cell cycle-dependent release of virus is not petition RIA of synchronized cells with $^{131}I$ labeled viral proteins synthesis during the cell cycle. The rate of synthesis of gag protein shows three peaks, corresponding to the $G_1,\;late\;S\;and\;late\;G_2$ phases of cell cycle. But the rate of synthesis of env protein dose not change, suggesting that in these cells the synthesis of these two gene products in controlled seperately. In Actionomycin D treated cells, the synthesis of viral proteins decreased sharply from 8 hours after treatment, and the late S and $G_2$ peaks of gag protein synthesis were disappeared. This shows the stability of viral RNA for about 6 hours in the absence of continuing viral RNA synthesis.

  • PDF

Limb-girdle Muscular Dystrophy (지대형 근이양증)

  • Kim, Dae-Seong
    • Annals of Clinical Neurophysiology
    • /
    • v.6 no.2
    • /
    • pp.65-74
    • /
    • 2004
  • Limb-girdle muscular dystrophy (LGMD) is a heterogeneous group of inherited muscle disorders caused by the mutations of different genes encoding muscle proteins. In the past, when the molecular diagnostic techniques were not available, the subtypes of muscular dystrophies were classified by the pattern of muscle weakness and the mode of inheritance, and LGMD had been considered as a 'waste basket' of muscular dystrophy because many unrelated heterogeneous cases with 'limb-girdle' weakness were put into the category of LGMD. With the advent of molecular genetics at the end of the last century, it has been known that there are many subtypes of LGMD caused by the mutation of different genes, and now, LGMD is classified according to the results of the linkage analysis and the genes or proteins affected. Only small proportion (probably less than 10%) of LGMD is dominantly inherited, and autosomal dominant LGMD (AD-LGMD) consists of six subtypes (LGMD1A to 1F) so far. In autosomal recessive LGMD (AR-LGMD), more than 10 subtypes (LGMD2A to 2J) have been linked and most of the causative genes have been identified. Among AR-LGMDs, LGMD2A (calpain 3 deficiency), 2B (dysferlin deficiency), and sarcoglycanopathy (LGMD2C-2F) are major subtypes. The defective proteins in LGMDs are components of nuclear envelope, cytosol, sarcomere, or sarcolemma, and seem to play a different role in the pathogenesis of muscular dystrophy. It is notable that many causative genes of LGMDs are also responsible for other categories of muscular dystrophy or diseases affecting other tissue. However, by which mechanism they produce such a broad phenotypic variability is still unknown. The identification of mutation in the relevant gene is confirmative for the diagnosis, and is essential for genetic counseling and antenatal diagnosis of LGMD. Because many different genes are responsible for LGMD, differentiation of subtypes using immunohistochemistry and western blotting is the essential step toward the detection of mutation. For the effective research and medical care of the patients with muscular dystrophy in Korea, a research center with a medical facility supported by the government seems to be needed.

  • PDF

Characterization of Bacillus thuringiensis Having Insecticidal Effects Against Larvae of Musca domestica

  • Oh, Se-Teak;Kim, Jin-Kyu;Yang, Si-Yong;Song, Min-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.1057-1062
    • /
    • 2004
  • The entomopathogenic bacterium Bacillus thuringiensis is the most widely used biopesticide. Insecticidal proteins, coded by genes located in plasmids, form typical parasporal, crystalline inclusions during sporulation. We isolated a Bacillus thuringiensis strain having insecticidal activity against larvae of the house fly (M. domestica) from the soils at a pig farm in Korea, and named it Bacillus thuringiensis SM. The culture filtrate from Bacillus thuringiensis SM showed strong lethality (83.3%) against M. domestica larvae. The parasporal crystal is enclosed within the spores' outermost envelope, as determined by transmission electron microscopy, and exhibited a bipyramidal form. The crystal proteins of strain SM consisted of five proteins with molecular weights of approximately ~130, ~80, ~68, ~42, and ~27 kDa on a 10% SDS-PAGE (major band, a size characteristic of Cry protein). Examination of antibiotic resistance revealed that the strain SM showed multiple resistant. The strain SM had at least three different plasmids with sizes of 6.6, 9.3, and 54 kb. Polymerase chain reactions (PCRs) revealed the presence of cry1, cry4A2, and cry11A1 genes in the strain SM. The cry1 gene profile of the strain SM appeared in the three respective products of 487 bp [cry1A(c)], 414 bp [cry1D], and 238 bp [cry1A(b)]. However, the strain SM has not shown the cry4A2 md cry11A1 genes. In in vivo toxicity assays, the strain SM showed high toxicity on fly larvae (M. domestic) [with $LC_{50}$ of 4.2 mg/ml, $LC_{90}$ of 8.2 mg/ml].

Mucosal Immune Response and Adjuvant Activity of Genetically Fused Escherichia coli Heat-Labile Toxin B Subunit

  • Lee, Yung-Gi;Kang, Hyung-Sik;Lee, Cheong-Ho;Paik, Sang-Gi
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.490-497
    • /
    • 2004
  • Although the E. coli heat-labile enterotoxin B subunit (LTB) is known to be a potent mucosal adjuvant towards co-administrated unrelated antigens and immunoregulator in T-helper 1-type-mediated autoimmune diseases, a more efficient and useful LTB is still required for prospective vaccine adjuvants. To determine whether a novel chimeric LTB subunit would produce an enhanced mucosal adjuvant activity and immune response, a number of LTB subunits were genetically fused with chimeric proteins using the epitope genes of the envelope glycoprotein E2 (gp51-54) from the classical swine fever virus (CSFV). It was found that the total serum immunoglobulin (Ig) levels of BALB/c mice orally immunized with chimeric proteins containing an N-terminal linked LTB subunit (LE1, LE2, and LE3) were higher than those of mice immunized with LTB, E2 epitope, and chimeric proteins that contained a C-terminal linked LTB subunit. In particular, immunization with LE1 markedly increased both the total serum Ig and fecal IgA level compared to immunization with LTB or the E2 epitope. Accordingly, the current results demonstrated that the LTB subunit in a chimeric protein exhibited a strong mucosal adjuvant effect as a carrier molecule, while the chimeric protein containing the LTB subunit stimulated the mucosal immune system by mediating the induction of antigen-specific serum Ig and mucosal IgA. Consequently, an LE1-mediated mucosal response may contribute to the development of effective antidiarrhea vaccine adjuvants.

Effect of Standardized Boesenbergia pandurata Extract and Its Active Compound Panduratin A on Skin Hydration and Barrier Function in Human Epidermal Keratinocytes

  • Woo, Seon Wook;Rhim, Dong-Bin;Kim, Changhee;Hwang, Jae-Kwan
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • The skin plays a key role in protecting the body from the environment and from water loss. Cornified envelope (CE) and natural moisturizing factor (NMF) are considered as the primary regulators of skin hydration and barrier function. The CE prevents loss of water from the body and is formed by cross-linking of several proteins. Among these proteins, filaggrin is an important protein because NMF is produced by the degradation of filaggrin. Proteases, including matriptase and prostasin, stimulate the generation of filaggrin from profilaggrin and caspase-14 plays a role in the degradation of filaggrin. This study elucidated the effects of an ethanol extract of Boesenbergia pandurata (Roxb.) Schltr., known as fingerroot, and its active compound panduratin A on CE formation and filaggrin processing in HaCaT, human epidermal keratinocytes. B. pandurata extract (BPE) and panduratin A significantly stimulated not only CE formation but also the expression of CE proteins, such as loricrin, involucrin, and transglutaminase, which were associated with $PPAR{\alpha}$ expression. The mRNA and protein levels of filaggrin and filaggrin-related enzymes, such as matriptase, prostasin, and caspase-14 were also up-regulated by BPE and panduratin A treatment. These results suggest that BPE and panduratin A are potential nutraceuticals which can enhance skin hydration and barrier function based on their CE formation and filaggrin processing.

Expression of a Glutathione Reductase from Brassica rapa subsp. pekinensis Enhanced Cellular Redox Homeostasis by Modulating Antioxidant Proteins in Escherichia coli

  • Kim, Il-Sup;Shin, Sun-Young;Kim, Young-Saeng;Kim, Hyun-Young;Yoon, Ho-Sung
    • Molecules and Cells
    • /
    • v.28 no.5
    • /
    • pp.479-487
    • /
    • 2009
  • Glutathione reductase (GR) is an enzyme that recycles a key cellular antioxidant molecule glutathione (GSH) from its oxidized form (GSSG) thus maintaining cellular redox homeostasis. A recombinant plasmid to overexpress a GR of Brassica rapa subsp. pekinensis (BrGR) in E. coli BL21 (DE3) was constructed using an expression vector pKM260. Expression of the introduced gene was confirmed by semi-quantitative RT-PCR, immunoblotting and enzyme assays. Purification of the BrGR protein was performed by IMAC method and indicated that the BrGR was a dimmer. The BrGR required NADPH as a cofactor and specific activity was approximately 458 U. The BrGR-expressing E. coli cells showed increased GR activity and tolerance to $H_2O_2$, menadione, and heavy metal ($CdCl_2$, $ZnCl_2$ and $AlCl_2$)-mediated growth inhibition. The ectopic expression of BrGR provoked the co-regulation of a variety of antioxidant enzymes including catalase, superoxide dismutase, glutathione peroxidase, and glucose-6-phosphate dehydrogenase. Consequently, the transformed cells showed decreased hydroperoxide levels when exposed to stressful conditions. A proteomic analysis demonstrated the higher level of induction of proteins involved in glycolysis, detoxification/oxidative stress response, protein folding, transport/binding proteins, cell envelope/porins, and protein translation and modification when exposed to $H_2O_2$ stress. Taken together, these results indicate that the plant GR protein is functional in a cooperative way in the E. coli system to protect cells against oxidative stress.