Browse > Article
http://dx.doi.org/10.1007/s10059-009-0168-y

Expression of a Glutathione Reductase from Brassica rapa subsp. pekinensis Enhanced Cellular Redox Homeostasis by Modulating Antioxidant Proteins in Escherichia coli  

Kim, Il-Sup (Department of Biology, Kyungpook National University)
Shin, Sun-Young (Department of Biology, Kyungpook National University)
Kim, Young-Saeng (Department of Biology, Kyungpook National University)
Kim, Hyun-Young (Department of Biology, Kyungpook National University)
Yoon, Ho-Sung (Department of Biology, Kyungpook National University)
Abstract
Glutathione reductase (GR) is an enzyme that recycles a key cellular antioxidant molecule glutathione (GSH) from its oxidized form (GSSG) thus maintaining cellular redox homeostasis. A recombinant plasmid to overexpress a GR of Brassica rapa subsp. pekinensis (BrGR) in E. coli BL21 (DE3) was constructed using an expression vector pKM260. Expression of the introduced gene was confirmed by semi-quantitative RT-PCR, immunoblotting and enzyme assays. Purification of the BrGR protein was performed by IMAC method and indicated that the BrGR was a dimmer. The BrGR required NADPH as a cofactor and specific activity was approximately 458 U. The BrGR-expressing E. coli cells showed increased GR activity and tolerance to $H_2O_2$, menadione, and heavy metal ($CdCl_2$, $ZnCl_2$ and $AlCl_2$)-mediated growth inhibition. The ectopic expression of BrGR provoked the co-regulation of a variety of antioxidant enzymes including catalase, superoxide dismutase, glutathione peroxidase, and glucose-6-phosphate dehydrogenase. Consequently, the transformed cells showed decreased hydroperoxide levels when exposed to stressful conditions. A proteomic analysis demonstrated the higher level of induction of proteins involved in glycolysis, detoxification/oxidative stress response, protein folding, transport/binding proteins, cell envelope/porins, and protein translation and modification when exposed to $H_2O_2$ stress. Taken together, these results indicate that the plant GR protein is functional in a cooperative way in the E. coli system to protect cells against oxidative stress.
Keywords
antioxidant enzymes; Brassica rapa subsp. pekinensis; Escherichia coli; glutathione reductase; stress tolerance;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Huang, Y.J., Tsai, T.Y., and Pan, T.M. (2007). Physiological response and protein expression under acid stress of Escherichia coli O157:H7 TWC01 isolated from Taiwan. J. Agric. Food Chem. 55, 7182-7191   DOI   ScienceOn
2 Jiang, F., Hellman, U., Sroga, G.E., Bergman, B., and Mannervik, B. (1995). Cloning, sequencing, and regulation of the glutathione reductase gene from the cyanobacterium Anabaena PCC 7120. J. Biol. Chem. 270, 22882-22889   DOI   PUBMED
3 Kubo, A., Sano, T., Saji, H., Tanaka, K., Kondo, N., and Tanaka, K. (1993). Primary structure and properties of glutathione reductase from Arabidopsis thaliana. Plant Cell Physiol. 34, 1259-1266
4 Lee, H., Jo, J., and Son, D. (1998). Molecular cloning and characterization of the gene encoding glutathione reductase in Brassica campestris. Biochim. Biophys. Acta 1395, 309-314   DOI   PUBMED   ScienceOn
5 Mockett, R.J., Sohal, R.S., and Orr, W.C. (1999). Overexpression of glutathione reductase extends survival in transgenic Drosophila melanogaster under hyperoxia but not normoxia. FASEB J. 13, 1733-1742   DOI
6 O’Donovan, D.J., Katkin, J.P., Tamura, T., Husser, R., Xu, X., Smith, C.V., and Welty, S.E. (1999). Gene transfer of mitochondrially targeted glutathione reductase protects H441 cells from t-butyl hydroperoxide-induced oxidant stresses. Am. J. Respir. Cell Mol. Biol. 20, 256-263   DOI   PUBMED   ScienceOn
7 Perry, A.C., Ni Bhriain, N., Brown, N.L., and Rouch, D.A. (1991). Molecular characterization of the gor gene encoding glutathione reductase from Pseudomonas aeruginosa: determinants of substrate specificity among pyridine nucleotide-disulphide oxidoreductases. Mol. Microbiol. 5, 163-171   DOI   ScienceOn
8 Seo, J.S., Lee, K.W., Rhee, J.S., Hwang, D.S., Lee, Y.M., Park, H.G., and Park, J.S. (2006). Environmental stressors (salinity, heavy metals, $H_2O_2$) modulate expression of glutathione reductase (GR) gene from the intertidal copepod Tigriopus japonicus. Aquatic Toxiol. 80, 281-289   DOI   ScienceOn
9 Spickett, C.M., Smirnoff, N., and Pitt, A.R. (2000). The biosynthesis of erythroascorbate in Saccharomyces cerevisiae and its role as an antioxidant. Free Radic Biol Med 28, 183-192   DOI   ScienceOn
10 Stevens, R.G., Creissen, G.P., and Mullineaux, P.M. (2000). Characterisation of pea cytosolic glutathione reductase expressed in transgenic tobacco. Planta 211, 537-545   DOI   ScienceOn
11 Wheeler, G.L., and Grant, C.M. (2004). Regulation of redox homeostasis in the yeast Saccharomyces cerevisiae. Physiol. Plant 120, 12-20   DOI   ScienceOn
12 Yohannes, E., Barnhart, D.M., and Slonczewski, J.L. (2004). pHdependent catabolic protein expression during anaerobic growth of Escherichia coli K-12. J. Bacteriol. 186, 192-199   DOI   ScienceOn
13 Bucheler, U.S., Werner, D., and Schirmer, R.H. (1992). Generating compatible translation initiation regions for heterologous gene expression in Escherichia coli by exhaustive periShine-Dalgarno mutagenesis. Human glutathione reductase cDNA as a model. Nucleic Acids Res. 20, 3127-3133   DOI   ScienceOn
14 Chou, J.H., Greenberg, J.T., and Demple, B. (1993). Posttranscriptional repression of Escherichia coli OmpF protein in response to redox stress: positive control of the micF antisense RNA by the soxRS locus. J. Bacteriol. 175, 1026-1031   DOI
15 Yoon, H.S., Lee, I.A., Lee, H., Lee, B.H., and Jo, J. (2005). Overexpression of a eukaryotic glutathione reductase gene from Brassica campestris improved resistance to oxidative stress in Escherichia coli. Biochem. Biophys. Res. Commun. 326, 618-623   DOI   ScienceOn
16 Ackerley, D.F., Barak, Y., Lynch, S.V., Curtin, J., and Matin, A. (2006). Effect of chromate stress on Escherichia coli K-12. J. Bacteriol. 188, 3371-3381   DOI   ScienceOn
17 Benov, L., and Al-Ibraheem, J. (2002). Disrupting Escherichia coli: a comparison of methods. J. Biochem. Mol. Biol. 35, 428-431   DOI   PUBMED
18 Chen, J., Brevet, A., Fromant, M., Leveque, F., Schmitter, J.M., Blanquet, S., and Plateau, P. (1990). Pyrophosphatase is essential for growth of Escherichia coli. J. Bacteriol. 172, 5686-5689   DOI
19 Greer, S., and Perham, R.N. (1986). Glutathione reductase from Escherichia coli: cloning and sequence analysis of the gene and relationship to other flavoprotein disulfide oxidoreductases. Biochemistry 25, 2736-2742   DOI   ScienceOn
20 Nellemann, L.J., Holm, F., Atlung, T., and Hansen, F.G. (1989). Cloning and characterization of the Escherichia coli phosphoglycerate kinase (pgk) gene. Gene 77, 185-191   DOI   ScienceOn
21 Carmel-Harel, O., and Storz, G. (2000). Roles of the glutathioneand thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu. Rev. Microbiol. 54, 439-461   DOI   ScienceOn
22 Seaver, L.C., and Imlay, J.A. (2001). Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J. Bacteriol. 183, 7173-7181   DOI   ScienceOn
23 Bernstein, C., Bernstein, H., Payne, C.M., Beard, S.E., and Schneider, J. (1999). Bile salt activation of stress response promoters in Escherichia coli. Curr. Microbiol. 39, 68-72   DOI   ScienceOn
24 Mendoza-Cozatl, D., Loza-Tavera, H., Hernandez-Navarro, A., and Moreno-Sanchez, R. (2005). Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol. Rev. 29, 653-671   DOI   ScienceOn
25 Li, M., Huang, W., Yang, Q., Liu, X., and Wu, Q. (2005). Expression and oxidative stress tolerance studies of glutaredoxin from cyanobacterium Synechocystis sp. PCC 6803 in Escherichia coli. Protein Expr. Purif. 42, 85-91   DOI   ScienceOn
26 Castro, F.A., Herdeiro, R.S., Panek, A.D., Eleutherio, E.C., and Pereira, M.D. (2007). Menadione stress in Saccharomyces cerevisiae strains deficient in the glutathione transferases. Biochim. Biophys. Acta 1770, 213-220   DOI   PUBMED   ScienceOn
27 Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685   DOI   PUBMED   ScienceOn
28 Fan, W., Zhang, Z., and Zhang, Y. (2009). Cloning and molecular characterization of fructose-1,6-bisphosphate aldolase gene regulated by high-salinity and drought in Sesuvium portulacastrum. Plant Cell Rep. 28, 975-984   DOI   ScienceOn
29 Nishino, K., Honda, T., and Yamaguchi, A. (2005). Genome-wide analyses of Escherichia coli gene expression responsive to the BaeSR two-component regulatory system. J. Bacteriol. 187, 1763-1772   DOI   ScienceOn
30 Lee, H., Won, S.H., Lee, B.H., Park, H.D., Chung, W.I., and Jo, J. (2002). Genomic cloning and characterization of glutathione reductase gene from Brassica campestris var. pekinensis. Mol. Cells 13, 245-251   PUBMED
31 Collinson, L.P., and Dawes, I.W. (1995). Isolation, characterization and overexpression of the yeast gene, GLR1, encoding glutathione reductase. Gene 156, 123-127   DOI   ScienceOn
32 Creissen, G.P., and Mullineaux, P.M. (1995). Cloning and characterisation of glutathione reductase cDNAs and identification of two genes encoding the tobacco enzyme. Planta 197, 422-425   PUBMED
33 Han, K.Y., Park, J.S., Seo, H.S., Ahn, K.Y., and Lee, J. (2008). Multiple stressor-induced proteome responses of Escherichia coli BL21(DE3). J. Proteome Res. 7, 1891-1903   DOI   ScienceOn
34 Pilon-Smits, E.A., Zhu, Y.L., Sears, T., and Terry, N. (2000). Overexpression of glutathion reductase in Brassica juncea: effects on cadmium accumulation and tolerance. Physiol. Plant 110, 455-460   DOI   ScienceOn
35 Tamarit, J., Cabiscol, E., and Ros, J. (1998). Identification of the major oxidatively damaged proteins in Escherichia coli cells exposed to oxidative stress. J. Biol. Chem. 273, 3027-3032   DOI   ScienceOn
36 Jiang, Z.Y., Hunt, J.V., and Wolff, S.P. (1992). Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal. Biochem. 202, 384-389   DOI   ScienceOn
37 Mishra, Y., Chaurasia, N., and Rai, L.C. (2009). AhpC (alkyl hydroperoxide reductase) from Anabaena sp. PCC 7120 protects Escherichia coli from multiple abiotic stresses. Biochem. Biophys. Res. Commun. 381, 606-611   DOI   ScienceOn
38 Yu, J., and Zhou, C.Z. (2007). Crystal structure of glutathione reductase Glr1 from the yeast Saccharomyces cerevisiae. Proteins 68, 972-979   DOI   ScienceOn
39 Martelli, A., and Moulis, J.M. (2004). Zinc and cadmium specifically interfere with RNA-binding activity of human iron regulatory protein 1. J. Inorg. Biochem. 98, 1413-1420   DOI   ScienceOn
40 Sugiyama, K., Kawamura, A., Izawa, S., and Inoue, Y. (2000). Role of glutathione in heat-shock-induced cell death of Saccharomyces cerevisiae. Biochem. J. 352, 71-78   DOI   ScienceOn