• 제목/요약/키워드: envelope of motion

검색결과 47건 처리시간 0.026초

틸팅차량의 최대 동적운동범위 산정 연구 (A study to determine the Kinematic Envelope of Tilting train)

  • 김남포;구병춘
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 춘계학술대회 논문집
    • /
    • pp.312-316
    • /
    • 2002
  • Tilting train is the best solution to provide faster passenger service on conventional railway lines without too costly modification of infrastructure. Kinematic envelope gauging is very important when applying tilting trains % conventional railways with limited clearance. Due to tilting motion, the kinematic envelope of tilting train is larger than that of non-tilting train. This study was done to estimate the maximum dimension of tilting train being suitable for Korean conventional lines. In this study the two worst cases of tilting train movement was assumed and related suspension displacements, geometrical overthrow of train on une, wear of wheel & rail were combined to determine kinematic envelope.

  • PDF

Envelope-Function Equation and Motion of Wave Packet in a Semiconductor Superlattice Structure

  • Kim, Byoung-Whi;Jun, Young-Il;Jung, Hee-Bum
    • ETRI Journal
    • /
    • 제21권1호
    • /
    • pp.1-27
    • /
    • 1999
  • We present a new description of envelope-function equation of the superlattice (SL). The SL wave function and corresponding effective-mass equation are formulated in terms of a linear combination of Bloch states of the constituent material with smaller band gap. In this envelope-function formalism, we review the fundamental concept on the motion of a wave packet in the SL structure subjected to steady and uniform electric fields F. The review confirms that the average of SL crystal momentums K = ($k_x,k_y,q$), where ($K_x,k_y$) are bulk inplane wave vectors and q SL wave vector, included in a wave packet satisfies the equation of motion = $_0+Ft/h$; and that the velocity and acceleration theorems provide the same type of group velocity and definition of the effective mass tensor, respectively, as in the Bulk. Finally, Schlosser and Marcus's method for the band theory of metals has been by Altarelli to include the interface-matching condition in the variational calculation for the SL structure in the multi-band envelope-function approximation. We re-examine this procedure more thoroughly and present variational equations in both general and reduced forms for SLs, which agrees in form with the proposed envelope-function formalism. As an illustration of the application of the present work and also for a brief investigation of effects of band-parameter difference on the subband energy structure, we calculate by the proposed variational method energies of non-strained $GaAs/Al_{0.32}Ga_{0.68}As$ and strained $In_{0.63}Ga_{0.37}As/In_{0.73}Ga_{0.27}As_{0.58}P_{0.42}SLs$ with well/barrier widths of $60{\AA}/500{\AA}$ and 30${\AA}/30{\AA}$, respectively.

  • PDF

자유 곡면체의 엔벨롭 생성 (Envelope Generation for Freeform Objects)

  • 송수창;김재정
    • 한국CDE학회논문집
    • /
    • 제6권2호
    • /
    • pp.89-100
    • /
    • 2001
  • Swept volume is the sweeping region of moving objects. It is used in various applications such as interference detection in assembly design, visualization of manipulator motions in robotics, simulation of the volume removal by a cutter in NC machining. The shape of swept volume is defined by the envelope, which is determined by the boundary of moving objects and its direction of motion. In order to implement the generation of swept volume, researchers have taken much effort to develop the techniques how to generate the envelope. However, their results are confined to envelope generated only in simple shape objects, such as polyhedra or quadric surfaces. This study provided the envelope generation algorithm of NURBS objects. Characteristic points were obtained by applying the geometric conditions of envelope to NURBS equations, and then characteristic curves were created by means of interpolating those points. Silhouette edges were determined in the following procedures. First, two adjacent surfaces which have the same edge were found from B-Rep data. Then, by taking the scalar product of velocity vector of a point on that edge with each normal vector on two surfaces, silhouette edges were discriminated. Finally, envelope was generated along moving direction in the form of ruled surfaces by using both the partial information between initial and final position of objects affecting envelope along with characteristic curves and silhouette edge. Since this developed algorithm can be applied not only to NURBS objects but also to their Boolean objects, it can be used effectively in various applications.

  • PDF

스크류 운동을 하는 다면체의 스웹 볼륨 생성 (Swept Volumes Generated by Polyhedral Objects Through Screw Motions)

  • 김재정;정채봉;서경천;강민우
    • 한국CDE학회논문집
    • /
    • 제7권4호
    • /
    • pp.211-218
    • /
    • 2002
  • Swept volumes have been used in a wide variety of applications, and the literature contains much discussion of methods for computing the swept volumes in many situations. However, the commercially available CAD systems do not support the operations of generating the swept volumes enough to satisfy a variety of users' needs. In this paper, we present a new, simple and efficient algorithm for computing the swept volume of moving a polyhedron in 3-D region. The screw motion is used to describe the sweep motion of a polyhedron, because of its simplicity and computational advantages. The boundary of a swept volume is the result of combining the envelope surfaces and the partial boundaries at the initial and final position of a polyhedron. Some portions of these boundaries are inside the swept volume. We develop the algorithm to remove these interior portions. Then, to implement our algorithm, it is performed to integrate our program with the commercial CAD software, CATIA.

Combinatorial continuous non-stationary critical excitation in M.D.O.F structures using multi-peak envelope functions

  • Ghasemi, S. Hooman;Ashtari, P.
    • Earthquakes and Structures
    • /
    • 제7권6호
    • /
    • pp.895-908
    • /
    • 2014
  • The main objective of critical excitation methods is to reveal the worst possible response of structures. This goal is accomplished by considering the uncertainties of ground motion, which is subjected to the appropriate constraints, such as earthquake power and intensity limit. The concentration of this current study is on the theoretical optimization aspect, as is the case with the majority of conventional critical excitation methods. However, these previous studies on critical excitation lead to a discontinuous power spectral density (PSD). This paper introduces some critical excitations which contain proper continuity in frequency domain. The main idea for generating such continuous excitations stems from the combination of two continuous functions. On the other hand, in order to provide a non-stationary model, this paper attempts to present an appropriate envelope function, which unlike the previous envelope functions, can properly cover the natural earthquakes' accelerograms based on multi-peak conditions. Finally, the proposed method is developed into the multiple-degree-of-freedom (M.D.O.F) structures.

REFLECTED BSDE DRIVEN BY A L$\acute{E}$VY PROCESS WITH STOCHASTIC LIPSCHITZ COEFFICIENT

  • Lu, Wen
    • Journal of applied mathematics & informatics
    • /
    • 제28권5_6호
    • /
    • pp.1305-1314
    • /
    • 2010
  • In this paper, we deal with a class of one-dimensional reflected backward stochastic differential equations driven by a Brownian motion and the martingales of Teugels associated with an independent L$\acute{e}$vy process having a stochastic Lipschitz coefficient. We derive the existence and uniqueness of solutions for these equations via Snell envelope and the fixed point theorem.

직선 운동 유닛의 감시 및 진단 시스템 개발 (Development of Monitoring and Diagnosis System for Linear Motion Unit)

  • 황젠;김화영;안중환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2012년도 추계학술대회 논문집
    • /
    • pp.635-636
    • /
    • 2012
  • In the present work, investigations by high frequency resonance technique for diagnosis of defect frequencies of linear motion unit are reported. Raw vibration signature of the moving parts at different speeds of operation has been demodulated. Envelope detected spectrum is analyzed to evaluate various defect frequencies and their energy levels. Experimentally evaluated frequencies are compared with theoretically determined defect frequencies. These frequency values and their energy levels are used to monitor intrinsic condition of linear motion unit as well as to establish severity of existing/developed defects on the LM guide and inside the LM block. Relative comparisons of linear motion units of the same type are made at various operating speeds under identical conditions of operation on the basis of identified defect frequencies and severity of defects.

  • PDF

Markov Envelope를 이용한 지진동의 위상차 확률분포와 전파지연시간의 추정 (Inference of the Probability Distribution of Phase Difference and the Path Duration of Ground Motion from Markov Envelope)

  • 최항;윤병익
    • 한국지진공학회논문집
    • /
    • 제26권5호
    • /
    • pp.191-202
    • /
    • 2022
  • Markov envelope as a theoretical solution of the parabolic wave equation with Markov approximation for the von Kármán type random medium is studied and approximated with the convolution of two probability density functions (pdf) of normal and gamma distributions considering the previous studies on the applications of Radiative Transfer Theory (RTT) and the analysis results of earthquake records. Through the approximation with gamma pdf, the constant shape parameter of 2 was determined regardless of the source distance ro. This finding means that the scattering process has the property of an inhomogeneous single-scattering Poisson process, unlike the previous studies, which resulted in a homogeneous multiple-scattering Poisson process. Approximated Markov envelope can be treated as the normalized mean square (MS) envelope for ground acceleration because of the flat source Fourier spectrum. Based on such characteristics, the path duration is estimated from the approximated MS envelope and compared to the empirical formula derived by Boore and Thompson. The results clearly show that the path duration increases proportionately to ro1/2-ro2, and the peak value of the RMS envelope is attenuated by exp (-0.0033ro), excluding the geometrical attenuation. The attenuation slope for ro≤100 km is quite similar to that of effective attenuation for shallow crustal earthquakes, and it may be difficult to distinguish the contribution of intrinsic attenuation from effective attenuation. Slowly varying dispersive delay, also called the medium effect, represented by regular pdf, governs the path duration for the source distance shorter than 100 km. Moreover, the diffraction term, also called the distance effect because of scattering, fully controls the path duration beyond the source distance of 300 km and has a steep gradient compared to the medium effect. Source distance 100-300 km is a transition range of the path duration governing effect from random medium to distance. This means that the scattering may not be the prime cause of peak attenuation and envelope broadening for the source distance of less than 200 km. Furthermore, it is also shown that normal distribution is appropriate for the probability distribution of phase difference, as asserted in the previous studies.

Developed empirical model for simulation of time-varying frequency in earthquake ground motion

  • Yu, Ruifang;Yuan, Meiqiao;Yu, Yanxiang
    • Earthquakes and Structures
    • /
    • 제8권6호
    • /
    • pp.1463-1480
    • /
    • 2015
  • This research aims to develop an empirical model for simulation of time-varying frequency in earthquake ground motion so as to be used easily in engineering applications. Briefly, 10545 recordings of the Next Generation Attenuation (NGA) global database of accelerograms from shallow crustal earthquakes are selected and binned by magnitude, distance and site condition. Then the wavelet spectrum of each acceleration record is calculated by using one-dimensional continuous wavelet transform, and the frequencies corresponding to the maximum values of the wavelet spectrum at a series of sampling time, named predominant frequencies, are extracted to analyze the variation of frequency content of seismic ground motions in time. And the time-variation of the predominant frequencies of 178 magnitude-distance-site bins for different directions are obtained by calculating the mean square root of predominant frequencies within a bin. The exponential trigonometric function is then use to fit the data, which describes the predominant frequency of ground-motion as a function of time with model parameters given in tables for different magnitude, distance, site conditions and direction. Finally, a practical frequency-dependent amplitude envelope function is developed based on the time-varying frequency derived in this paper, which has clear statistical parameters and can emphasize the effect of low-frequency components on later seismic action. The results illustrate that the time-varying predominant frequency can preferably reflect the non-stationarity of the frequency content in earthquake ground motions and that empirical models given in this paper facilitates the simulation of ground motions.

입체 캠의 형상 설계와 가공에 관한 연구 (A Study on Design and Manufacture of Spatial Cams)

  • 김찬봉;양민양
    • 대한기계학회논문집
    • /
    • 제17권6호
    • /
    • pp.1361-1371
    • /
    • 1993
  • 본 연구에서는 여러가지 입체 캠 기구에 대하여 기구학적인 구성조건과 캠 곡선을 바탕으로 매개변수형태의 포락면이론에 의하여 캠 형상을 구하고, 이를 직접 가공할 수 있는 NC 파트프로그램을 얻는 CAD/CAM 소프트웨어를 구성하여 정밀성, 생산성, 효율성 등을 증진하고자 한다.