• Title/Summary/Keyword: entropy image

Search Result 343, Processing Time 0.062 seconds

A Novel Method of Determining Parameters for Contrast Limited Adaptive Histogram Equalization (대비제한 적응 히스토그램 평활화에서 매개변수 결정방법)

  • Min, Byong-Seok;Cho, Tae-Kyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1378-1387
    • /
    • 2013
  • Histogram equalization, which stretches the dynamic range of intensity, is the most common method for enhancing the contrast of image. Contrast limited adaptive histogram equalization(CLAHE), proposed by K. Zuierveld, has two key parameters: block size and clip limit. These parameters mainly control image quality, but have been heuristically determined by user. In this paper, we propose a novel method of determining two parameters of CLAHE using entropy of image. The key idea is based on the characteristics of entropy curves: clip limit vs entropy and block size vs entropy. Clip limit and block size are determined at the point with maximum curvature on entropy curve. Experimental results show that the proposed method improves images with very low contrast.

An Entropy Masking Model for Image and Video Watermarking (영상 워터마킹을 위한 엔트로피 마스킹 모델)

  • Kim, Seong-Whan;Shan Suthaharan
    • The KIPS Transactions:PartB
    • /
    • v.10B no.5
    • /
    • pp.491-496
    • /
    • 2003
  • We present a new watermark design tool for digital images and digital videos that are based on human visual system (HVS) characteristics. In this tool, basic mechanisms (inhibitory and excitatory behaviour of cells) of HVS are used to determine image dependent upper bound values on watermark insertion. This allows us to insert maximai allowable transparent watermark, which in turn is extremely hard to attack with common image processing, Motion Picture Experts Group (MPEG) compression. As the number of details (e.g. edges) increases in an image, the HVS decrease its sensitivity to the details. In the same manner, as the number of motion increases in a video signal, the HVS decrease its sensitivity to the motions. We model this decreased sensitivity to the details and motions as an (motion) entropy masking. Entropy masking model can be efficiently used to increase the robustness of image and video watermarks. We have shown that our entropy-masking model provides watermark scheme with increased transparency and henceforth increased robustness.

A New Image Coding Technique with Low Entropy

  • Joo, S.H.;H.Kikuchi;S.Sasaki;Shin, J.
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1998.06b
    • /
    • pp.189-194
    • /
    • 1998
  • We introduce a new zerotree scheme that effectively exploits the inter-scale self-similarities found in the octave decomposition by a wavelet transform. A zerotree is useful to efficiently code wavelet coefficients and its efficiency was proved by Shapiro's EZW. In the coding scheme, wavelet coefficients are symbolized and entropy-coded for more compression. The entropy per symbol is determined from the produced symbols and the final coded size is calculated by multiplying the entropy and the total number of symbols. In this paper, were analyze produced symbols from the EZW and discuss the entropy per symbol. Since the entropy depends on the produced symbols, we modify the procedure of symbolic streaming out for the purpose. First, we extend the relation between a parent and children used in the EZW to raise a probability that a significant parent has significant children. The proposed relation is flexibly extended according to the fact that a significant coefficient is highly addressed to have significant coefficients in its neighborhood. The extension way is reasonable because an image is decomposed by convolutions with a wavelet filter and thus neighboring coefficients are not independent with each other.

  • PDF

A New Automatic Thresholding of Gray-Level Images Based on Maximum Entropy of Two-Dimensional Pixel Histogram (이웃 화소간 이차원 히스토그램 엔트로피 최대화를 이용한 명도영상 임계값 설정)

  • 김호연;남윤석;김혜규;박치항
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.77-80
    • /
    • 2000
  • In this paper, we present a new automatic thresholding algorithm based on maximum entropy of two-dimensional pixel histogram. While most of the previous algorithms select thresholds depending only on the histogram of gray level itself in the image, the presented algorithm considers 2D relational histogram of gray levels of two adjacent pixels in the image. Thus, the new algorithm tends to leave salient edge features on the image after thresholding. The experimental results show the good performance of the presented algorithm.

  • PDF

On the performance of Multi-Valued Image Entropy Coding for LCD source drivers

  • Sasaki, Hisashi;Arai, Tooru;Hachiuma, Masayuki;Masuko, Akira;Taguchi, Takashi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1240-1243
    • /
    • 2004
  • Multi-Valued Image Entropy Coding (MVIEC) is a new class of joint source channel coding, which reduces both input-width (1/4) and average current (0.36-1.3) for LCD source drivers. This paper describes the detail results on MVIEC for several image sets in order to verify the practical performance.

  • PDF

Wavelet Transform Image Compression Using Shuffling and Correlation (Shuffling 및 상관도를 이용한 웨이블릿 영상 압축)

  • 김승종;민병석;정제창
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.609-612
    • /
    • 1999
  • In this paper, we propose wavelet transform image compression method such that an image is decomposed into multiresolutions using biorthogonal wavelet transform with linear phase response property and decomposed subbands are classified by maximum classification gain. The classified data is quantized by allocating bits in accordance with classified class informations within subbands through arbitrary set bit allocation algorithm. And then, quantized data in each subband are entropy coded. The proposed coding method is that the quantized data perform shuffling before entropy coding in order to remove sign bit plane. And the context is assigned by maximum correlation direction for bit plane coding.

  • PDF

Maximum-Entropy Image Enhancement Using Brightness Mean and Variance (영상의 밝기 평균과 분산을 이용한 엔트로피 최대화 영상 향상 기법)

  • Yoo, Ji-Hyun;Ohm, Seong-Yong;Chung, Min-Gyo
    • Journal of Internet Computing and Services
    • /
    • v.13 no.3
    • /
    • pp.61-73
    • /
    • 2012
  • This paper proposes a histogram specification based image enhancement method, which uses the brightness mean and variance of an image to maximize the entropy of the image. In our histogram specification step, the Gaussian distribution is used to fit the input histogram as well as produce the target histogram. Specifically, the input histogram is fitted with the Gaussian distribution whose mean and variance are equal to the brightness mean(${\mu}$) and variance(${\sigma}2$) of the input image, respectively; and the target Gaussian distribution also has the mean of the value ${\mu}$, but takes as the variance the value which is determined such that the output image has the maximum entropy. Experimental results show that compared to the existing methods, the proposed method preserves the mean brightness well and generates more natural looking images.

Region of Interest Heterogeneity Assessment for Image using Texture Analysis

  • Park, Yong Sung;Kang, Joo Hyun;Lim, Sang Moo;Woo, Sang-Keun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.17-21
    • /
    • 2016
  • Heterogeneity assessment of tumor in oncology is important for diagnosis of cancer and therapy. The aim of this study was performed assess heterogeneity tumor region in PET image using texture analysis. For assessment of heterogeneity tumor in PET image, we inserted sphere phantom in torso phantom. Cu-64 labeled radioisotope was administrated by 156.84 MBq in torso phantom. PET/CT image was acquired by PET/CT scanner (Discovery 710, GE Healthcare, Milwaukee, WI). The texture analysis of PET images was calculated using occurrence probability of gray level co-occurrence matrix. Energy and entropy is one of results of texture analysis. We performed the texture analysis in tumor, liver, and background. Assessment textural features of region-of-interest (ROI) in torso phantom used in-house software. We calculated the textural features of torso phantom in PET image using texture analysis. Calculated entropy in tumor, liver, and background were 5.322, 7.639, and 7.818. The further study will perform assessment of heterogeneity using clinical tumor PET image.