• Title/Summary/Keyword: entropy condition

Search Result 97, Processing Time 0.021 seconds

PERELMAN TYPE ENTROPY FORMULAE AND DIFFERENTIAL HARNACK ESTIMATES FOR WEIGHTED DOUBLY NONLINEAR DIFFUSION EQUATIONS UNDER CURVATURE DIMENSION CONDITION

  • Wang, Yu-Zhao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1539-1561
    • /
    • 2021
  • We prove Perelman type 𝒲-entropy formulae and differential Harnack estimates for positive solutions to weighed doubly nonlinear diffusion equation on weighted Riemannian manifolds with CD(-K, m) condition for some K ≥ 0 and m ≥ n, which are also new for the non-weighted case. As applications, we derive some Harnack inequalities.

A Study on the Weights of the Condition Evaluation of Rock Slope used in Entropy and AHP Method (AHP 및 엔트로피 기법을 적용한 절리암반비탈면 상태평가항목의 가중치 연구)

  • Seong, Joohyun;Byun, Yoseph
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.61-66
    • /
    • 2016
  • Many cut slopes are located along national roads, there were the collapse of cut slopes. In this study, the weights for condition evaluation of rock slopes was calculated using the entropy method and analytic hierachy process(AHP) method. The entropy analysis was performed using 95 cut slope data, and the AHP analysis was performed by a questionnaire to several expert. The weights based on analysis results were compared with evaluation weights of existing standard. As a result of this study, there was the difference of weights among the analytical methods. Later on, if this study's results is used to improvement current evaluation weights, it will be possible to perform the reliable condition evaluation.

Issues and Solutions of Roe Schemes for High Mach Number Flows (고마하수 유동에서 Roe 해법의 문제와 해결)

  • Won S. H.;Choi J. Y.;Jeung I. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.128-134
    • /
    • 2005
  • In the CFD area, the numerical analysis of high Mach number flow over a blunt-body poses many issues. Various numerical schemes have been developed to cover the issues, but the traditional schemes are still used widely due to the complexities of new schemes and intricacy of modifying the established codes. In the present study, the well-known Roe's FDS based on TVD-MUSCL scheme is used for the solution of very high Mach number three-dimensional flows posing carbuncle and non-physical phenomena in numerical analysis. A parametric study was carried out to account for the effects of the entropy fixing, grid configurations and initial condition. The carbuncle phenomena could be easily overcome by the entropy fixing, and the non-physical solution could be eliminated by the use of the modified initial condition regardless of entropy fixing and grid configurations.

  • PDF

A New Formulation of the Reconstruction Problem in Neutronics Nodal Methods Based on Maximum Entropy Principle (노달방법의 중성자속 분포 재생 문제에의 최대 엔트로피 원리에 의한 새로운 접근)

  • Na, Won-Joon;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.193-204
    • /
    • 1989
  • This paper develops a new method for reconstructing neutron flux distribution, that is based on the maximum entropy Principle in information theory. The Probability distribution that maximizes the entropy Provides the most unbiased objective Probability distribution within the known partial information. The partial information are the assembly volume-averaged neutron flux, the surface-averaged neutron fluxes and the surface-averaged neutron currents, that are the results of the nodal calculation. The flux distribution on the boundary of a fuel assembly, which is the boundary condition for the neutron diffusion equation, is transformed into the probability distribution in the entropy expression. The most objective boundary flux distribution is deduced using the results of the nodal calculation by the maximum entropy method. This boundary flux distribution is then used as the boundary condition in a procedure of the imbedded heterogeneous assembly calculation to provide detailed flux distribution. The results of the new method applied to several PWR benchmark problem assemblies show that the reconstruction errors are comparable with those of the form function methods in inner region of the assembly while they are relatively large near the boundary of the assembly. The incorporation of the surface-averaged neutron currents in the constraint information (that is not done in the present study) should provide better results.

  • PDF

Three-dimensional structural health monitoring based on multiscale cross-sample entropy

  • Lin, Tzu Kang;Tseng, Tzu Chi;Lainez, Ana G.
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.673-687
    • /
    • 2017
  • A three-dimensional; structural health monitoring; vertical; planar; cross-sample entropy; multiscaleA three-dimensional structural health monitoring (SHM) system based on multiscale entropy (MSE) and multiscale cross-sample entropy (MSCE) is proposed in this paper. The damage condition of a structure is rapidly screened through MSE analysis by measuring the ambient vibration signal on the roof of the structure. Subsequently, the vertical damage location is evaluated by analyzing individual signals on different floors through vertical MSCE analysis. The results are quantified using the vertical damage index (DI). Planar MSCE analysis is applied to detect the damage orientation of damaged floors by analyzing the biaxial signals in four directions on each damaged floor. The results are physically quantified using the planar DI. With progressive vertical and planar analysis methods, the damaged floors and damage locations can be accurately and efficiently diagnosed. To demonstrate the performance of the proposed system, performance evaluation was conducted on a three-dimensional seven-story steel structure. According to the results, the damage condition and elevation were reliably detected. Moreover, the damage location was efficiently quantified by the DI. Average accuracy rates of 93% (vertical) and 91% (planar) were achieved through the proposed DI method. A reference measurement of the current stage can initially launch the SHM system; therefore, structural damage can be reliably detected after major earthquakes.

Maximum Entropy Principle for Queueing Theory

  • SungJin Ahn;DongHoon Lim;SooTaek Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.2
    • /
    • pp.497-505
    • /
    • 1997
  • We attempt to get a probabilistic model of a queueing system in the maximum entropy condition. Applying the maximum entropy principle to the queueing system, we obtain the most uncertain probability model compatible with the available information expressed by moments.

  • PDF

Recurrence plot entropy for machine defect severity assessment

  • Yan, Ruqiang;Qian, Yuning;Huang, Zhoudi;Gao, Robert X.
    • Smart Structures and Systems
    • /
    • v.11 no.3
    • /
    • pp.299-314
    • /
    • 2013
  • This paper presents a nonlinear time series analysis technique for evaluating machine defect severity, based on the Recurrence Plot (RP) entropy. The RP entropy is calculated from the probability distribution of the diagonal line length in the recurrence plot, which graphically depicts a system's dynamics and provides a global picture of the autocorrelation in a time series over all available time-scales. Results of experimental studies conducted on a spindle-bearing test bed have demonstrated that, as the working condition of the bearing deteriorates due to the initiation and/or progression of structural damages, the frequency information contained in the vibration signal becomes increasingly complex, leading to the increase of the RP entropy. As a result, RP entropy can serve as an effective indicator for defect severity assessment of rolling bearings.

Entropy and information energy arithmetic operations for fuzzy numbers

  • Hong, Dug-Hun;Kim, Kyung-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.754-758
    • /
    • 2005
  • There have been several tipical methods being used tomeasure the fuzziness (entropy) of fuzzy sets. Pedrycz is the original motivation of this paper. Recently, Wang and Chiu [FSS103(1999) 443-455] and Pedrycz [FSS 64(1994) 21-30] showed the relationship(addition, subtraction, multiplication) between the entropies of the resultant fuzzy number and the original fuzzy numbers of same type. In this paper, using Lebesgue-Stieltjes integral, we generalize results of Wang and Chiu [FSS 103(1999) 443-455] concerning entropy arithmetic operations without the condition of same types of fuzzy numbers. And using this results and trade-off relationship between information energy and entropy, we study more properties of information energy of fuzzy numbers.

Minimum-Entropy-Based Autofocus Method for Real SAR Images (실제 SAR 영상에서의 최소 엔트로피 기반의 자동 초점 기법 연구)

  • Hwang, Jeonghun;Shin, Hyun-Ik;Kim, Whan-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.5
    • /
    • pp.366-374
    • /
    • 2018
  • In cases of airborne equipped with SAR, because the occurrence of motion is inevitable, it is necessary to apply autofocus techniques to SAR images to improve the image performance degradations caused by residual errors. Herein, a robust autofocus algorithm based on the minimum entropy criteria is proposed for the real SAR data in the spotlight mode. The convergence condition of the phase error estimation is checked at every iteration and if it is violated, the size of the phase error estimation is adjusted to the convergence condition. The real SAR raw data is used to demonstrate the excellent performance of the proposed algorithm.