• Title/Summary/Keyword: entrance skin dose

Search Result 34, Processing Time 0.021 seconds

A Study on the Image Quality and Patient Dose in Erect Simple Abdomen Radiography (복부 선자세 단순촬영시 화질과 피폭선량에 관한 연구)

  • Kim, Jung-Min;Hayashi, Taro;Ishida, Yuji;Sakurai, Tatsuya
    • Journal of radiological science and technology
    • /
    • v.21 no.1
    • /
    • pp.29-34
    • /
    • 1998
  • The purpose of simple abdomen erect projection is to see the fluid level which indicates gastrointestinal ileus or free air due to perforation. we do not have to insist on low kVp technique in simple abdomen erect position as long as we can detect the fluid level and free air shadow. Therefore, the author tried to decrease patient dose by high kVp technique and to improve the image quality due to motion artifact by reduction of exposure time. [Methods] Experiment 1. * screen/film SRO1000/HRH * exposure factor : $140\;kvp{\pm}5\;kv$ with added filters, 200 mA, 0.01 sec * phantom : Acryles : 15.0 cm(equivalent to 17 cm body thickness) 17.5 cm(equivalent to 21 cm body thickness) 20.0 cm (equivalent to 25 cm body thickness) With the exposure factor for same film density($D=0.8{\pm}0.1$) and with the materials above, we tried to find out entrance skin dose and gonad dose for both male and female. Experiment 2. Burger's phantom radiography were checked to see whether there was any change of image quality according to the kVp and the added filters. Experiment 3. Using rotating meter(self made), we examined the motion artifact and the exposure time limitation. [Results and conculution] 1. Using high voltage technique of 140 kVp with added filter, Skin dose, testicle dose and ovary dose decrease to 89.3%, 47% and 71.4% respectively compare to 70 kVp technique, 2. No great changes of Burger's phantom image has detected as from 70 kVp to 140 kVp and the air hole size of Burger's phantom over 0.028 cc(Diameter 3 mm, hight 4 mm) can be distinghished. 3. 0.01 sec(1 pulse) exposure time is possible in the single phase full wave rectification that why we can quitely reduce the unsharness caused by patient's movement.

  • PDF

Comparisons of Image Quality and Entrance Surface Doses according to Care Dose 4D + Care kV in Chest CT (Chest CT에서 Care Dose 4D+Care kV에 따른 화질과 입사표면선량 비교)

  • Kang, Eun-Bo
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.1
    • /
    • pp.45-51
    • /
    • 2022
  • This study compared DLP values along with phantom entrance surface doses and the image quality of chest CT scans made using a Care Dose 4D+Care kV System, scans that are made using only the Care Dose 4D function, and scans that are made with changes made by applying 80 kVp, 100 kVp, 120 kVp, and 140 kVp to the Care Dose 4D and tube voltage to search for methods to maintain the highest image quality with minimal patient doses. It was shown that DLP values decreased 6.727% when scans were taken with Chest Care Dose 4D + Care kV semi 100 and 6.481% when scans were taken with Chest Care Dose 4D + Care kV. With Chest Non as a standard, skin surface doses decreased 16.519% when scans were taken with Chest Care Dose 4D + Care kV semi 100 and 15.705% when scans were taken with Chest Care Dose 4D + Care kV. With comparisons of image quality, when comparisons were made with Chest Non, comparisons made of SNR values and CNR values in all scanning conditions including Care Dose 4D + Care kV showed that there were no significant differences at P>0.05. Imaging using Chest Care Dose 4D + Care kV in chest CT showed that exposure doses decreased similarly to result values gained from the best conditions through manual adjustments of kV and mAS, and there were no significant differences in image SNR and CNR. If the Chest Care Dose 4D + Care kV function is used, image quality is maintained and patient exposure to radiation can be reduced.

Entrance Skin Dose According to Age and Body Size for Pediatric Chest Radiography (소아 흉부촬영 시 나이와 체격에 따른 입사피부선량)

  • Shin, Gwi-Soon;Min, Ki-Yeul;Kim, Doo-Han;Lee, Kwang-Jae;Park, Ji-Hwan;Lee, Gui-Won
    • Journal of radiological science and technology
    • /
    • v.33 no.4
    • /
    • pp.327-334
    • /
    • 2010
  • Exposure during childhood results in higher risk for certain detrimental cancers than exposure during adulthood. We measured entrance skin dose (ESD) under 7-year children undergoing chest imaging and compared the relationship between ESD and age, height, weight, chest thickness. Though it is important to measure chest thickness for setting up the exposure condition of chest examination, it is difficult to measure chest thickness of children. We set up exposure parameters according to age because chest thickness of children has correlation with age. In the exposure parameters, for chest A-P examination under 2 year-children, tube voltage (kVp) in hospital A was higher than that in hospital B while tube current (mAs) was higher in hospital B, thus the ESD values were about 1.7 times higher in hospital B. However, for chest P-A examination over 4 year-children, the tube voltage was 7 kVp higher in hospital B, the tube current were same in all two systems, and focus to image receptor distance (FID) in hospital B (180 cm) was longer than that in hospital A (130 cm), thus the ESD values were 1.4 times higher in hospital A. For same ages, the ESD values for chest A-P examinations were higher than those for chest P-A examinations. Comparing ESD according to age, ESD values were $154{\mu}Gy$, $194{\mu}Gy$ and $138{\mu}Gy$ for children under 1 year, 1 to under 4 years and 4 to under 7 years of age, respectively. These values were lower than reference level ($200{\mu}Gy$) recommended in JART (japan association of radiological technologists), however these were higher than reference values recommended by EC (european commission), NRPB (national radiological protection board) and NIFDS (national institute of food & drug safety evaluation). In conclusion, the values of ESD were affected by exposure parameters from radiographer's past experience more than x-ray system. ESD values for older children were not always higher than those for younger children. Therefore we need to establish our own DRLs (diagnostic reference levels) according to age of the children in order to optimize pediatric patient protection.

Effects of Self-Made Bismuth Shield Installation on Entrance surface Dose Reduction during Endovascular Treatment of Cerebral Aneurysms (뇌동맥류 코일 색전술시 자체 제작한 Bismuth 차폐체 설치의 피부선량 감소 효과)

  • Kim, Jae-Seok;Kim, Young-Kil;Choi, Jae-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.175-183
    • /
    • 2019
  • Cerebral nervous system intervention has been reported frequently due to radiation exposure such as blistering of the skin, hair loss, and erythema due to prolonged procedures. By applying ergonomically manufactured Bismuth (atomic number 83; Bi) shield to endovascular treatment of cerebral aneurysms, we aimed to minimize radiation exposure of scalp and lens from medical radiation exposure. The measurement site was the posterior part of the head, bilateral temporal part, bilateral quadriceps part, nose part, and the measuring part was attached to the optically stimulated Luminescence dosimeter (OSLD) Before and after the use, the entrance surface dose was compared and analyzed. The average entrance surface dose of group A (unshield) was 92.44 mGy, and group B was measured at 67.55 mGy. The average decrease in Group B was 26.92% compared to Group A. The entrance surface dose mean of the occipital region was measured at 146.08 mGy B group at 103.23 mGy and decreased by an average of 29.32% in group B compared to group A. The average entrance surface dose of the bilateral temporal part was measured in group A at 101.90 mGy group B at 72.69 mGy and decreased by an average of 28.67% in group B compared to group A. The average entrance surface dose for bilateral quadriceps part was measured at 27.51 mGy group B at 21.39 mGy and averaged 22.26% less in group B than group A. It is believed that the use of bismuth shields will be an alternative to reducing radiation disturbance due to temporary hair loss and other stochastic effects that may occur after the endovascular treatment of cerebral aneurysms procedure.

Comparative Study of the Effective Dose from Panoramic Radiography in Dentistry Measured Using a Radiophotoluminescent Glass Dosimeter and an Optically Stimulated Luminescence Detector

  • Lee, Kyeong Hee;Kim, Myeong Seong;Kweon, Dae Cheol;Choi, Jiwon
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1377-1384
    • /
    • 2018
  • Accurate measurement of the absorbed dose and the effective dose is required in dental panoramic radiography involving relatively low energy with a rotational X-ray tube system using long exposures. To determine the effectiveness of measuring the irradiation by using passive dosimetry, we compared the entrance skin doses by using a radiophotoluminescent glass dosimeter (RPL) and an optically stimulated luminescence detector (OSL) in a phantom model consisting of nine and 31 transverse sections. The parameters of the panoramic device were set to 80 kV, 4 mA, and 12 s in the standard program mode. The X-ray spectrum was applied in the same manner as the panoramic dose by using the SpekCalc Software. The results indicated a mass attenuation coefficient of $0.008226cm^2/g$, and an effective energy of 34 keV. The equivalent dose between the RPL and the OSL was calculated based on a product of the absorbed doses. The density of the aluminum attenuators was $2.699g/cm^3$. During the panoramic examination, tissue absorption doses with regard to the RPL were a surface dose of $75.33{\mu}Gy$ and a depth dose of $71.77{\mu}Gy$, those with regard to the OSL were surface dose of $9.2{\mu}Gy$ a depth dose of $70.39{\mu}Gy$ and a mean dose of $74.79{\mu}Gy$. The effective dose based on the International Commission on Radiological Protection Publication 103 tissue weighting factor for the RPL were $0.742{\mu}Sv$, $8.9{\mu}Sv$, $2.96{\mu}Sv$ and those for the OSL were $0.754{\mu}Sv$, $9.05{\mu}Sv$, and $3.018{\mu}Sv$ in the parotid and sublingual glands, orbit, and thyroid gland, respectively. The RPL was more effective than the OSL for measuring the absorbed radiation dose in low-energy systems with a rotational X-ray tube.

Comparison of ESD and Major Organ Absorbed Doses of 5-Year-Old Standard Guidelines and Clinical Exposure Conditions (소아 5세 표준촬영 가이드라인과 임상 촬영조건의 입사표면선량과 주요 장기흡수선량 비교)

  • Kang, A-Rum;Lee, In-Ja;Ahn, Sung-Min
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.355-361
    • /
    • 2017
  • Pediatrics are more sensibility to radiation than adults and because they are organs that are not completely grown, they have a life expectancy that can be adversely affected by exposure. Therefore, the management of exposure dose is more important than the case of adult. The purpose of this study was to determine the suitability of the 10 year old phantom for the 5 year old pediatric's recommendation and the incident surface dose, and to measure the organ absorbed dose. This study is compared the organ absorbed dose and the entrance surface dose in the clinical conditions at 5 and 10 years old pediatric. Clinical 5 year old condition was slightly higher than recommendation condition and 10 year old condition was very high. In addition, recommendation condition ESD was found to be 43% higher than the ESD of the 5 year old group and the ESD of the 10 year old group was 126% higher than that of the 5 year old group. The recommended ESD at 5 years old and the ESD according to clinical imaging conditions were 31.6%. There was no significant difference between the 5 year old recommended exposure conditions and the organ absorbed dose due to clinical exposure conditions, but there was a large difference between the Chest and Pelvic. However, it was found that there was a remarkable difference when comparing the organ absorbed dose by 10 year clinical exposure conditions. Therefore, more detailed standard exposure dose for the recommended dose of pediatric should be studied.

A Comparative Study of Patient Dose and Image Quality according to the Presence or Absence of Grid During Chest PA Radiography using an Auto Exposure Control System (자동 노출 조절장치를 사용한 흉부 후·전 방향 방사선 검사 시 격자 유·무에 따른 환자 선량과 영상품질 비교 연구)

  • So-min Lee;Han-yong Kim;Dong-hwan Kim;Young-Cheol Joo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.573-579
    • /
    • 2023
  • This study compares dose difference between the presence or absence of grid in Chest PA radiography using auto exposure control and compares image quality among presence, absence or virtual grid, and proposes a new clinically useful grid combination for chest radiography. The human body phantom was placed Chest PA position and the dosimeter was placed at T6. The same irradiation conditions and field size were applied. 30 images were obtained in the state in which grid was applied and in the state in which grid was not applied, and an additional 30 images in which the virtual grid was applied to the image without the grid were obtained. Radiation dose was presented to entrance surface dose. The image quality was analyzed by comparing the signal-to-noise and contrast-to-noise ratio. ESD decreased by 48% when the grid was not used, compared to when the grid was used. SNR and CNR increased by 32% and 30% compared to grid use when grid was not used, respectively. In the case of using the virtual grid, it increased by 18% and 16% respectively, compared to the case of using the grid. As a result of this study, it is believed that when using a virtual grid instead of a grid, the quality of the image can be maintained while reducing the patient dose.

The Study on the Image Quality and Patient Exposure Dose of Chest Radiography in Korea (흉부촬영시 피폭선량과 화질에 관한 조사연구)

  • Lee, Sun-Sook;Huh, Joon
    • Journal of radiological science and technology
    • /
    • v.18 no.2
    • /
    • pp.49-59
    • /
    • 1995
  • Recently, general radiography became to variety because of the continuous development of Inverter type generator and ortho chromatic system. Therefore, we must re-evaluate about patient exposure dose and image quality. I studied about chest radiography which has frequency among general radiography being used during FEB. to AUG., 1994 over 151 medical facilities from medical facilities that are located in Seoul area. The result obtained were as follows ; 1) The rectification method of the generator were employing mainly single phase full wave in 82.8 %, three phase full wave in 11.26 % and Inverter type in 4.64 % and condenser type is 1.32 %. 2) Exposure kV was used below 80 kV in most medical facilities and 21.8 % of the medical facilities was using high tube voltage higher than 120 kV. 3) The exposure time was used below the 0.05 sec in 28.4 %, in 29.8 % of the medical facilities used above 0.1 sec. 4) The usage frequency of the added filter is 15.3 %, and among them compound filter was used only 4 %. 5) Rare earth screen was used in 37.7 %. 6) The average skin entrance dose was 0.25 mSv, the range of dose is $0.05{\sim}0.79\;mSv$ in each medical facilities. 7) The average density of the lung field is 1.76, 0.49 in lung side, 0.30 in mediastinum and 0.37 in heart shadow. Therefore it is required to improve all of these for increasing image quality and reducing patient exposure dose as soon as possible.

  • PDF

A Study on the Evaluation of Patient Dose in Interventional Radiology (중재적방사선검사에서 환자 피폭선량에 관한 연구)

  • Park, Hyung-Sin;Lim, Cheong-Hwan;Kang, Byung-Sam;You, In-Gyu;Jung, Hong-Ryang
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.299-308
    • /
    • 2012
  • To perform patient dose surveys in major interventional radiography procedures as a mean of inter-institutional comparison and of establishing reference dose levels with the ultimate goal of optimizing patient doses in the field of interventional radiography. We reviewed international patient dose survey data in the literature and measured patient dose in major interventional radiography procedures (TACE, AVF, PTBD, TFCA, GDC embolization). ESD(Entrance Skin Dose) was measured using TLD chips attached to the patient skin and ED(Effective Dose) was calculated using angiography unit-derived DAP. A survey of patient dose in interventional radiography procedures were also performed with a questionnaire for interventional radiologists and we proposed a guideline for optimizing patient doses in the field of interventional radiology. The patient dose survey data in interventional radiography procedures were very rare in literature compared with those in diagnostic radiography procedures. In TACE, the mean ED was 25.43 mSv and the mean ESD was 511.75 mGy. The mean ED of TACE was not high, but the cumulative dose should be checked, due to longer procedure TACE. In TFCA, the mean ED was 22.6 mSv and it was relatively high compared with data of other countries. In GDC embolization, the mean ED was not available, because GDC embolization was performed with old Image-Intensifier-type unit and there has no unit-installed ionization chamber. Also, the mean ESD of GDC embolization was up to 2,264 mGy and further studies are needed to calculate the net ED of GDC embolization. Patient dose occurred during interventional radiography procedures are high related with the difficulty of the procedure, fluoroscopy time, the number of angiographies and the treatment protocol. Therefore, continuous education and efforts should be made to optimize the patient dose in the field of interventional radiology.

The Necessity of Resetting the Filter Criteria for the Minimization of Dose Creep in Digital Imaging Systems (디지털 영상 시스템에서 선량 크리프 최소화를 위한 부가 필터 두께 권고 기준의 재설정에 대한 연구)

  • Kim, Kyo Tae;Kim, Kum Bae;Kang, Sang Sik;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.757-763
    • /
    • 2019
  • Recently, Following the recent development of flat panel detector with wide dynamic ranges, increasing numbers of healthcare providers have begun to use digital radiography. As a result, filter thickness standards should be reestablished, as current clinical practice requires the use of thicknesses recommended by the National Council on Radiation Protection and Measurements, which are based on information, acquired using conventional analog systems. Here we investigated the possibility of minimizing dose creep and optimizing patient dose using Al filters in digital radiography. The use of thicker Al filters resulted in a maximum 19.3% reduction in the entrance skin exposure dose when medical images with similar sharpness values were compared. However, resolution, which is a critical factor in imaging, had a significant change of 1.01 lp/mm. This change in resolution is thought to be due to the increased amount of scattered rays generated from the object due to the X-ray beam hardening effect. The increase in the number of scattered rays was verified using the scattering degradation factor. However, the FPD, which has recently been developed and is widely used in various areas, has greater response to radiation than analog devices and has a wide dynamic range. Therefore, the FPD is expected to maintain an appropriate level of resolution corresponding to the increase in the scattered-ray content ratio, which depends on filter thickness. Use of the FPD is also expected to minimize dose creep by reducing the exposure dose.