Browse > Article
http://dx.doi.org/10.3938/jkps.73.1377

Comparative Study of the Effective Dose from Panoramic Radiography in Dentistry Measured Using a Radiophotoluminescent Glass Dosimeter and an Optically Stimulated Luminescence Detector  

Lee, Kyeong Hee (Department of Dental Hygiene, Shinhan University)
Kim, Myeong Seong (Department of Radiology, The Korean National Cancer Center)
Kweon, Dae Cheol (Department of Radiological Science, Shinhan University)
Choi, Jiwon (Department of Radiological Science, Jeonju University)
Abstract
Accurate measurement of the absorbed dose and the effective dose is required in dental panoramic radiography involving relatively low energy with a rotational X-ray tube system using long exposures. To determine the effectiveness of measuring the irradiation by using passive dosimetry, we compared the entrance skin doses by using a radiophotoluminescent glass dosimeter (RPL) and an optically stimulated luminescence detector (OSL) in a phantom model consisting of nine and 31 transverse sections. The parameters of the panoramic device were set to 80 kV, 4 mA, and 12 s in the standard program mode. The X-ray spectrum was applied in the same manner as the panoramic dose by using the SpekCalc Software. The results indicated a mass attenuation coefficient of $0.008226cm^2/g$, and an effective energy of 34 keV. The equivalent dose between the RPL and the OSL was calculated based on a product of the absorbed doses. The density of the aluminum attenuators was $2.699g/cm^3$. During the panoramic examination, tissue absorption doses with regard to the RPL were a surface dose of $75.33{\mu}Gy$ and a depth dose of $71.77{\mu}Gy$, those with regard to the OSL were surface dose of $9.2{\mu}Gy$ a depth dose of $70.39{\mu}Gy$ and a mean dose of $74.79{\mu}Gy$. The effective dose based on the International Commission on Radiological Protection Publication 103 tissue weighting factor for the RPL were $0.742{\mu}Sv$, $8.9{\mu}Sv$, $2.96{\mu}Sv$ and those for the OSL were $0.754{\mu}Sv$, $9.05{\mu}Sv$, and $3.018{\mu}Sv$ in the parotid and sublingual glands, orbit, and thyroid gland, respectively. The RPL was more effective than the OSL for measuring the absorbed radiation dose in low-energy systems with a rotational X-ray tube.
Keywords
Absorbed dose; Dentistry; Effective dose; Optically stimulated luminescence detector; Panoramic radiography; Radiophotoluminescent glass dosimeter;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. Knezevic, L. Stolarczyk, I. Bessieres, J. M. Bordy, S. Miljanic and P. Olko, Radiat. Meas. 57, 9 (2013).   DOI
2 H. Nanto, Y. Yanagida, M. Sugiyama, Y. Koguchi, Y. Ihara, T. Iida, K. Shimizu, T. Ikeguchi, K. Hirasawa, Y. Takei and T. Yamamoto, Sensor. Mater. 29, 1439 (2017).
3 F. Gijbels, R. Jacobs, R. Bogaerts, D. Debaveye, S. Verlinden and G. Sanderink, Dentomaxillofac. Radiol. 34, 145 (2005).   DOI
4 J. B. Ludlow, L. E. Davies-Ludlow and S. C. White, J. Am. Dent. Assoc. 139, 1237 (2008).   DOI
5 J. B. Ludlow, L. E. Davies-Ludlow, S. L. Brooks and W. B. Howerton, Dentomaxillofac. Radiol. 35, 219 (2006).   DOI
6 J. N. Lee, W. J. Han and E. K. Kim, Korean J. Oral Maxillofac. Radiol. 37, 93 (2007).
7 S. Y. Kim, J. W. Han and I. W. Park, Korean J. Oral Maxillofac. Radiol. 38, 7 (2008).
8 I. W. Park et al., J. Korean Soc. Radiol. 7, 17 (2013).   DOI
9 C. Lee, S. S. Lee, J. E. Kim, K. H. Huh, W. J. Yi, M. S. Heo and S. C. Choi, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 121, 322 (2016).   DOI
10 Asahi Techno Corporation, Explanation material of RPL glass dosimeter: Small element system (Tokyo, Japan, 2000).
11 Y. O. Salem, A. Nourreddine, A. Nachab, C. Roy and A. Pape, J. Nucl. Sci. Technol. 2, 53 (2015).
12 E. H. Silva, Z. Knezevic, L. Struelens, P. Covens, S. Ueno, F. Vanhavere and N. Buls, Radiat. Prot. Dosimetry 170, 208 (2016).   DOI
13 International Organization for Standardization. X and gamma reference radiation for calibrating dosemeters and dose rate meters and for determining their response as a function of photon energy-Part 1: Radiation characteristics and production methods-ISO 4037-1 (1996).
14 V. Schembri and B. J. Heijmen, Med. Phys. 34, 2113 (2007).   DOI
15 J. C. Polf, S. W. S. McKeever, M. S. Akselrod and S. Holmstrom, Radiat. Prot. Dosimetry 100, 301 (2002).   DOI
16 International Commission on Radiological Protection: The 2007 Recommendations of the International Commission on Radiological Protection. Ann ICRP. Publication 103. Amsterdam: Elsevier (2007).
17 G. Poludniowski, G. Landry, F. DeBlois, P. M. Evans and F. Verhaegen, Phys. Med. Biol. 54, N433 (2009).   DOI
18 Y. Miyamotoab et al., Radiat. Meas. 46, 1480 (2011).   DOI
19 I. Clairanda et al., Radiat. Meas. 46, 1252 (2011).   DOI
20 Moga, Jacqueline D. Characterization of low-energy photon-emitting brachytherapy sources and kilovoltage X-ray beams using spectrometry. Thesis, The University of Wisconsin-Madison, 2011.
21 A. H. Benali, Physica Medica 32, 292 (2016).
22 C. G. Kim, J. Korea Acad. Industr. Coop. Soc. 12, 2624 (2011).   DOI
23 H. L. Lee, H. Y. Kim, H. W. Choi, H. M. Lee and C. S. Lim, J. Korea Acad. Industr. Coop. Soc. 13, 2278 (2012).   DOI
24 S. Gavala, C. Donta, K. Tsiklakis, A. Boziari, V. Kamenopoulou and H. C. Stamatakis, Eur. J. Radiol. 171, 42 (2009).
25 T. Matsuda et al., in Programme and Abstract Book, 17th International Congress of Dentomaxillofac. Radiol. (2009), p. 133.
26 A. H. Pakravan, S. M. R. Aghamiri, T. Bamdadian, M. Gholami and M. Moshfeghi, J. Biomed. Phys. Eng. (2018), (in press).
27 T. Okano and J. Sur, Jpn. Dent. Sci. Rev. 46, 112 (2010).   DOI
28 M. S. Linet, T. L. Slovis, D. L. Miller, R. Kleinerman, C. Lee, P. Rajarman and A. Berrington de Gonzalez, CA Cancer J. Clin. 62, 75 (2012).   DOI
29 B. H. Cho, K. S. Nah and A. R. Lee, Korean J. Oral Maxillofac. Radiol. 25, 437 (1995).
30 D. C. Kweon, K. R. Dong, J. E. Jung, K. H. Lee, S. K. Kim, W. T. Kim, C. J. Lee, W. H. Song and S. C. Ma, J. Radiol. Sci. Technol. 33, 1 (2010).
31 M. S. Pearce et al., Lancet 380, 499 (2012).   DOI