• Title/Summary/Keyword: ensemble method

Search Result 511, Processing Time 0.033 seconds

A Study on reduction of out-of-band radiation in T-DMB (T-DMB 시스템 대역외 방사 저감기법 고찰)

  • Bang, Keukjoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.2
    • /
    • pp.146-150
    • /
    • 2017
  • In OFDM system, the out-of-band radiation of ensemble interferes with the adjacent ensemble and result in the reduction of receiving performance. So the reduction scheme of out-of-band radiation is very important. In this paper, a time-domain windowing method to reduce the out-of-band radiation is considered to DAB systems. We adopt the considered method to T-DMB(DAB mode-1) and AT-DMB Systems, and we get about 3-dB gains of out-of-band radiation. And also we show that the considered method doesn't reduce the BER performance.

Credit Risk Evaluations of Online Retail Enterprises Using Support Vector Machines Ensemble: An Empirical Study from China

  • LI, Xin;XIA, Han
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.8
    • /
    • pp.89-97
    • /
    • 2022
  • The e-commerce market faces significant credit risks due to the complexity of the industry and information asymmetries. Therefore, credit risk has started to stymie the growth of e-commerce. However, there is no reliable system for evaluating the creditworthiness of e-commerce companies. Therefore, this paper constructs a credit risk evaluation index system that comprehensively considers the online and offline behavior of online retail enterprises, including 15 indicators that reflect online credit risk and 15 indicators that reflect offline credit risk. This paper establishes an integration method based on a fuzzy integral support vector machine, which takes the factor analysis results of the credit risk evaluation index system of online retail enterprises as the input and the credit risk evaluation results of online retail enterprises as the output. The classification results of each sub-classifier and the importance of each sub-classifier decision to the final decision have been taken into account in this method. Select the sample data of 1500 online retail loan customers from a bank to test the model. The empirical results demonstrate that the proposed method outperforms a single SVM and traditional SVMs aggregation technique via majority voting in terms of classification accuracy, which provides a basis for banks to establish a reliable evaluation system.

A Study on Temperature Analysis for Smart Electrical Power Devices (스마트 전력 기기의 온도 분석에 관한 연구)

  • Vasanth, Ragu;Lee, Myeongbae;Kim, Younghyun;Park, Myunghye;Lee, Seungbae;Park, Jwangwoo;Cho, Yongyun;Shin, Changsun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.8
    • /
    • pp.353-358
    • /
    • 2017
  • An electrical power utility, like an electrical power pole, includes various kinds of sensors for smart services. Temperature data is considered one of the important factors that can influence the smart operations of this utility. This study suggests a method for temperature data analysis for deciding the status of the smart electrical power utilities by using Kalman Filter and Ensemble Model. The suggested approach separates the temperature data according to the different positions of the temperature sensors of a utility, then uses Kalman Filter and Ensemble Model to analyse the characteristics of the temperature variation. With detailed processes, method explains the variation between an external temperature factor like weather temperature data and the sensed temperature data, and then, analysis the temperature data from each position of electrical power utilities. In this process, the suggested method uses Kalman Filter to remove error data and the ensemble model to find out mean value of every hour of electrical data. The result and discussion of temperature analysis were described clearly with the analysed results of electrical data. Finally, we were able to check the working condition of the power devices and the range of the temperature data foe each devices, which may help to indicate any causalities with respect to the devices in the utility pole.

A Study on Improving the Performance of Document Classification Using the Context of Terms (용어의 문맥활용을 통한 문헌 자동 분류의 성능 향상에 관한 연구)

  • Song, Sung-Jeon;Chung, Young-Mee
    • Journal of the Korean Society for information Management
    • /
    • v.29 no.2
    • /
    • pp.205-224
    • /
    • 2012
  • One of the limitations of BOW method is that each term is recognized only by its form, failing to represent the term's meaning or thematic background. To overcome the limitation, different profiles for each term were defined by thematic categories depending on contextual characteristics. In this study, a specific term was used as a classification feature based on its meaning or thematic background through the process of comparing the context in those profiles with the occurrences in an actual document. The experiment was conducted in three phases; term weighting, ensemble classifier implementation, and feature selection. The classification performance was enhanced in all the phases with the ensemble classifier showing the highest performance score. Also, the outcome showed that the proposed method was effective in reducing the performance bias caused by the total number of learning documents.

Random projection ensemble adaptive nearest neighbor classification (랜덤 투영 앙상블 기법을 활용한 적응 최근접 이웃 판별분류기법)

  • Kang, Jongkyeong;Jhun, Myoungshic
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.401-410
    • /
    • 2021
  • Popular in discriminant classification analysis, k-nearest neighbor classification methods have limitations that do not reflect the local characteristic of the data, considering only the number of fixed neighbors. Considering the local structure of the data, the adaptive nearest neighbor method has been developed to select the number of neighbors. In the analysis of high-dimensional data, it is common to perform dimension reduction such as random projection techniques before using k-nearest neighbor classification. Recently, an ensemble technique has been developed that carefully combines the results of such random classifiers and makes final assignments by voting. In this paper, we propose a novel discriminant classification technique that combines adaptive nearest neighbor methods with random projection ensemble techniques for analysis on high-dimensional data. Through simulation and real-world data analyses, we confirm that the proposed method outperforms in terms of classification accuracy compared to the previously developed methods.

A Study on the Prediction of Cabbage Price Using Ensemble Voting Techniques (앙상블 Voting 기법을 활용한 배추 가격 예측에 관한 연구)

  • Lee, Chang-Min;Song, Sung-Kwang;Chung, Sung-Wook
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.3
    • /
    • pp.1-10
    • /
    • 2022
  • Vegetables such as cabbage are greatly affected by natural disasters, so price fluctuations increase due to disasters such as heavy rain and disease, which affects the farm economy. Various efforts have been made to predict the price of agricultural products to solve this problem, but it is difficult to predict extreme price prediction fluctuations. In this study, cabbage prices were analyzed using the ensemble Voting technique, a method of determining the final prediction results through various classifiers by combining a single classifier. In addition, the results were compared with LSTM, a time series analysis method, and XGBoost and RandomForest, a boosting technique. Daily data was used for price data, and weather information and price index that affect cabbage prices were used. As a result of the study, the RMSE value showing the difference between the actual value and the predicted value is about 236. It is expected that this study can be used to select other time series analysis research models such as predicting agricultural product prices

Development of a Deep Learning-based Midterm PM2.5 Prediction Model Adapting to Trend Changes (경향성 변화에 대응하는 딥러닝 기반 초미세먼지 중기 예측 모델 개발)

  • Dong Jun Min;Hyerim Kim;Sangkyun Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.6
    • /
    • pp.251-259
    • /
    • 2024
  • Fine particulate matter, especially PM2.5 with a diameter of less than 2.5 micrometers, poses significant health and economic risks. This study focuses on the Seoul region of South Korea, aiming to analyze PM2.5 data and trends from 2017 to 2022 and develop a mid-term prediction model for PM2.5 concentrations. Utilizing collected and produced air quality and weather data, reanalysis data, and numerical model prediction data, this research proposes an ensemble evaluation method capable of adapting to trend changes. The ensemble method proposed in this study demonstrated superior performance in predicting PM2.5 concentrations, outperforming existing models by an average F1 Score of approximately 42.16% in 2019, 58.92% in 2021, and 34.79% in 2022 for future 3 to 6-day predictions. The model maintains performance under changing environmental conditions, offering stable predictions and presenting a mid-term prediction model that extends beyond the capabilities of existing deep learning-based short-term PM2.5 forecasts.

A Prediction of Northeast Asian Summer Precipitation Using Teleconnection (원격상관을 이용한 북동아시아 여름철 강수량 예측)

  • Lee, Kang-Jin;Kwon, MinHo
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.179-183
    • /
    • 2015
  • Even though state-of-the-art general circulation models is improved step by step, the seasonal predictability of the East Asian summer monsoon still remains poor. In contrast, the seasonal predictability of western North Pacific and Indian monsoon region using dynamic models is relatively high. This study builds canonical correlation analysis model for seasonal prediction using wind fields over western North Pacific and Indian Ocean from the Global Seasonal Forecasting System version 5 (GloSea5), and then assesses the predictability of so-called hybrid model. In addition, we suggest improvement method for forecast skill by introducing the lagged ensemble technique.

Learning to Prevent Inactive Student of Indonesia Open University

  • Tama, Bayu Adhi
    • Journal of Information Processing Systems
    • /
    • v.11 no.2
    • /
    • pp.165-172
    • /
    • 2015
  • The inactive student rate is becoming a major problem in most open universities worldwide. In Indonesia, roughly 36% of students were found to be inactive, in 2005. Data mining had been successfully employed to solve problems in many domains, such as for educational purposes. We are proposing a method for preventing inactive students by mining knowledge from student record systems with several state of the art ensemble methods, such as Bagging, AdaBoost, Random Subspace, Random Forest, and Rotation Forest. The most influential attributes, as well as demographic attributes (marital status and employment), were successfully obtained which were affecting student of being inactive. The complexity and accuracy of classification techniques were also compared and the experimental results show that Rotation Forest, with decision tree as the base-classifier, denotes the best performance compared to other classifiers.

Performance Improvement of a Deep Learning-based Object Recognition using Imitated Red-green Color Blindness of Camouflaged Soldier Images (적록색맹 모사 영상 데이터를 이용한 딥러닝 기반의 위장군인 객체 인식 성능 향상)

  • Choi, Keun Ha
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.139-146
    • /
    • 2020
  • The camouflage pattern was difficult to distinguish from the surrounding background, so it was difficult to classify the object and the background image when the color image is used as the training data of deep-learning. In this paper, we proposed a red-green color blindness image transformation method using the principle that people of red-green blindness distinguish green color better than ordinary people. Experimental results show that the camouflage soldier's recognition performance improved by proposed a deep learning model of the ensemble technique using the imitated red-green-blind image data and the original color image data.