• Title/Summary/Keyword: ensemble mean

검색결과 203건 처리시간 0.024초

Mapping of Education Quality and E-Learning Readiness to Enhance Economic Growth in Indonesia

  • PRAMANA, Setia;ASTUTI, Erni Tri
    • Asian Journal of Business Environment
    • /
    • 제12권1호
    • /
    • pp.11-16
    • /
    • 2022
  • Purpose: This study is aimed to map the provinces in Indonesia based on the education and ICT indicators using several unsupervised learning algorithms. Research design, data, and methodology: The education and ICT indicators such as student-teacher ratio, illiteracy rate, net enrolment ratio, internet access, computer ownership, are used. Several approaches to get deeper understanding on provincial strength and weakness based on these indicators are implemented. The approaches are Ensemble K-Mean and Fuzzy C Means clustering. Results: There are at least three clusters observed in Indonesia the education quality, participation, facilities and ICT Access. Cluster with high education quality and ICT access are consist of DKI Jakarta, Yogyakarta, Riau Islands, East Kalimantan and Bali. These provinces show rapid economic growth. Meanwhile the other cluster consisting of six provinces (NTT, West Kalimantan, Central Sulawesi, West Sulawesi, North Maluku, and Papua) are the cluster with lower education quality and ICT development which impact their economic growth. Conclusions: The provinces in Indonesia are clustered into three group based on the education attainment and ICT indicators. Some provinces can directly implement e-learning; however, more provinces need to improve the education quality and facilities as well as the ICT infrastructure before implementing the e-learning.

Future Sea Level Projections over the Seas Around Korea from CMIP5 Simulations (CMIP5 자료를 활용한 우리나라 미래 해수면 상승)

  • Heo, Tae-Kyung;Kim, Youngmi;Boo, Kyung-On;Byun, Young-Hwa;Cho, Chunho
    • Atmosphere
    • /
    • 제28권1호
    • /
    • pp.25-35
    • /
    • 2018
  • This study presents future potential sea level change over the seas surrounding Korea using Climate Model Intercomparison Project Phase 5 9 model ensemble result from Representative Concentration Pathways (RCPs), downloaded from icdc.zmaw.de. At the end of 21st century, regional sea level changes are projected to rise 37.8, 48.1, 47.7, 65.0 cm under RCP2.6, RCP4.5, RCP6.0 and RCP8.5 scenario, respectively with the large uncertainty from about 40 to 60 cm. The results exhibit similar tendency with the global mean sea level rise (SLR) with small differences less than about 3 cm. For the East Sea, the Yellow Sea, and the southern sea of Korea, projected SLR in the Yellow Sea is smaller and SLR in the southern sea is larger than the other coastal seas. Differences among the seas are small within the range of 4 cm. Meanwhile, Commonwealth Scientific and Industrial Research Organization (CSIRO) data in 23 years shows that the mean rate of sea level changes around the Yellow Sea is high relative to the other coastal seas. For sea level change, contribution of ice and ocean related components are important, at local scale, Glacial Isostatic Adujstment also needs to be considered.

Changes in the Low Latitude Atmospheric Circulation at the End of the 21st Century Simulated by CMIP5 Models under Global Warming (CMIP5 모델에서 모의되는 지구온난화에 따른 21세기 말 저위도 대기 순환의 변화)

  • Jung, Yoo-Rim;Choi, Da-Hee;Baek, Hee-Jeong;Cho, Chunho
    • Atmosphere
    • /
    • 제23권4호
    • /
    • pp.377-387
    • /
    • 2013
  • Projections of changes in the low latitude atmospheric circulation under global warming are investigated using the results of the CMIP5 ensemble mean. For this purpose, 30-yr periods for the present day (1971~2000) and the end of the $21^{st}$ century (2071~2100) according to the RCP emission scenarios are compared. The wintertime subtropical jet is projected to strengthen on the upper side of the jet due to increase in meridional temperature gradient induced by warming in the tropical upper-troposphere and cooling in the stratosphere except for the RCP2.6. It is also found that a strengthening of the upper side of the wintertime subtropical jet in the RCP2.6 due to tropical upper-tropospheric warmings. Model-based projection shows a weakening of the mean intensity of the Hadley cell, an upward shift of cell, and poleward shift of the Hadley circulation for the winter cell in both hemispheres. A weakening of the Walker circulation, which is one of the most robust atmospheric responses to global warming, is also projected. These results are consistent with findings in the previous studies based on CMIP3 data sets. A weakening of the Walker circulation is accompanied with decrease (increase) in precipitation over the Indo-Pacific warm pool region (the equatorial central and east Pacific). In addition, model simulation shows a decrease in precipitation over subtropical regions where the descending branch of the winter Hadley cell in both hemispheres is strengthened.

Comparison of Velocity Fields of Wake behind a Propeller Using 2D PIV and stereoscopic PIV (2D PIV와 stereoscopic PIV 기법으로 측정한 프로펠러 후류의 속도장 비교 연구)

  • Paik Bu-Geun;Lee Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2002년도 추계학술대회 논문집
    • /
    • pp.23-26
    • /
    • 2002
  • The phase-averaged velocity fields of 3 dimensional turbulent wake behind a marine propeller measured by 2D PIV and stereoscopic PIV(SPIV) were compared directly. In-plane velocity fields obtained from the consecutive particle images captured by one camera in 2D PIV have perspective errors due to out-of-plane motion. However, the perspective errors can be removed by measuring three component velocity fields using SPIV method with two cameras. It is also necessary to measure three components velocity fields for the investigation of complicated near-wake behind the propeller for the suitable propeller design. 400 instantaneous velocity fields were measured for each of four different blade phases of $0^{\circ},\;18^{\circ},\;36^{\circ}C\;and\;54^{\circ}$. They were ensemble averaged to investigate the spatial evolution of the propeller wake in the downstream region. The phase-averaged velocity fields show the viscous wake developed along the blade surfaces and tip vortices were formed periodically. The perspective errors caused by the out-of-plane motion was estimated by the comparison of 2D PIV and SPIV results. The difference in the axial mean velocity fields measured by both techniques are nearly proportional to the mean out-of-plane velocity component which has large values in the regions of the tip and trailing vortices. The axial turbulence intensity measured by 2D PIV was overestimated since the out-of-plane velocity fluctuations influence the in-plane velocity vectors and increase the in-plane turbulence intensities.

  • PDF

Age Prediction based on the Transcriptome of Human Dermal Fibroblasts through Interval Selection (피부섬유모세포 전사체 정보를 활용한 구간 선택 기반 연령 예측)

  • Seok, Ho-Sik
    • Journal of IKEEE
    • /
    • 제26권3호
    • /
    • pp.494-499
    • /
    • 2022
  • It is reported that genome-wide RNA-seq profiles has potential as biomarkers of aging. A number of researches achieved promising prediction performance based on gene expression profiles. We develop an age prediction method based on the transcriptome of human dermal fibroblasts by selecting a proper age interval. The proposed method executes multiple rules in a sequential manner and a rule utilizes a classifier and a regression model to determine whether a given test sample belongs to the target age interval of the rule. If a given test sample satisfies the selection condition of a rule, age is predicted from the associated target age interval. Our method predicts age to a mean absolute error of 5.7 years. Our method outperforms prior best performance of mean absolute error of 7.7 years achieved by an ensemble based prediction method. We observe that it is possible to predict age based on genome-wide RNA-seq profiles but prediction performance is not stable but varying with age.

Predicting rock brittleness indices from simple laboratory test results using some machine learning methods

  • Davood Fereidooni;Zohre Karimi
    • Geomechanics and Engineering
    • /
    • 제34권6호
    • /
    • pp.697-726
    • /
    • 2023
  • Brittleness as an important property of rock plays a crucial role both in the failure process of intact rock and rock mass response to excavation in engineering geological and geotechnical projects. Generally, rock brittleness indices are calculated from the mechanical properties of rocks such as uniaxial compressive strength, tensile strength and modulus of elasticity. These properties are generally determined from complicated, expensive and time-consuming tests in laboratory. For this reason, in the present research, an attempt has been made to predict the rock brittleness indices from simple, inexpensive, and quick laboratory test results namely dry unit weight, porosity, slake-durability index, P-wave velocity, Schmidt rebound hardness, and point load strength index using multiple linear regression, exponential regression, support vector machine (SVM) with various kernels, generating fuzzy inference system, and regression tree ensemble (RTE) with boosting framework. So, this could be considered as an innovation for the present research. For this purpose, the number of 39 rock samples including five igneous, twenty-six sedimentary, and eight metamorphic were collected from different regions of Iran. Mineralogical, physical and mechanical properties as well as five well known rock brittleness indices (i.e., B1, B2, B3, B4, and B5) were measured for the selected rock samples before application of the above-mentioned machine learning techniques. The performance of the developed models was evaluated based on several statistical metrics such as mean square error, relative absolute error, root relative absolute error, determination coefficients, variance account for, mean absolute percentage error and standard deviation of the error. The comparison of the obtained results revealed that among the studied methods, SVM is the most suitable one for predicting B1, B2 and B5, while RTE predicts B3 and B4 better than other methods.

Assessment of compressive strength of high-performance concrete using soft computing approaches

  • Chukwuemeka Daniel;Jitendra Khatti;Kamaldeep Singh Grover
    • Computers and Concrete
    • /
    • 제33권1호
    • /
    • pp.55-75
    • /
    • 2024
  • The present study introduces an optimum performance soft computing model for predicting the compressive strength of high-performance concrete (HPC) by comparing models based on conventional (kernel-based, covariance function-based, and tree-based), advanced machine (least square support vector machine-LSSVM and minimax probability machine regressor-MPMR), and deep (artificial neural network-ANN) learning approaches using a common database for the first time. A compressive strength database, having results of 1030 concrete samples, has been compiled from the literature and preprocessed. For the purpose of training, testing, and validation of soft computing models, 803, 101, and 101 data points have been selected arbitrarily from preprocessed data points, i.e., 1005. Thirteen performance metrics, including three new metrics, i.e., a20-index, index of agreement, and index of scatter, have been implemented for each model. The performance comparison reveals that the SVM (kernel-based), ET (tree-based), MPMR (advanced), and ANN (deep) models have achieved higher performance in predicting the compressive strength of HPC. From the overall analysis of performance, accuracy, Taylor plot, accuracy metric, regression error characteristics curve, Anderson-Darling, Wilcoxon, Uncertainty, and reliability, it has been observed that model CS4 based on the ensemble tree has been recognized as an optimum performance model with higher performance, i.e., a correlation coefficient of 0.9352, root mean square error of 5.76 MPa, and mean absolute error of 4.1069 MPa. The present study also reveals that multicollinearity affects the prediction accuracy of Gaussian process regression, decision tree, multilinear regression, and adaptive boosting regressor models, novel research in compressive strength prediction of HPC. The cosine sensitivity analysis reveals that the prediction of compressive strength of HPC is highly affected by cement content, fine aggregate, coarse aggregate, and water content.

A Characterization of Oil Sand Reservoir and Selections of Optimal SAGD Locations Based on Stochastic Geostatistical Predictions (지구통계 기법을 이용한 오일샌드 저류층 해석 및 스팀주입중력법을 이용한 비투멘 회수 적지 선정 사전 연구)

  • Jeong, Jina;Park, Eungyu
    • Economic and Environmental Geology
    • /
    • 제46권4호
    • /
    • pp.313-327
    • /
    • 2013
  • In the study, three-dimensional geostatistical simulations on McMurray Formation which is the largest oil sand reservoir in Athabasca area, Canada were performed, and the optimal site for steam assisted gravity drainage (SAGD) was selected based on the predictions. In the selection, the factors related to the vertical extendibility of steam chamber were considered as the criteria for an optimal site. For the predictions, 110 borehole data acquired from the study area were analyzed in the Markovian transition probability (TP) framework and three-dimensional distributions of the composing media were predicted stochastically through an existing TP based geostatistical model. The potential of a specific medium at a position within the prediction domain was estimated from the ensemble probability based on the multiple realizations. From the ensemble map, the cumulative thickness of the permeable media (i.e. Breccia and Sand) was analyzed and the locations with the highest potential for SAGD applications were delineated. As a supportive criterion for an optimal SAGD site, mean vertical extension of a unit permeable media was also delineated through transition rate based computations. The mean vertical extension of a permeable media show rough agreement with the cumulative thickness in their general distribution. However, the distributions show distinctive disagreement at a few locations where the cumulative thickness was higher due to highly alternating juxtaposition of the permeable and the less permeable media. This observation implies that the cumulative thickness alone may not be a sufficient criterion for an optimal SAGD site and the mean vertical extension of the permeable media needs to be jointly considered for the sound selections.

Applicability Assessment of Hydrological Drought Outlook Using ESP Method (ESP 기법을 이용한 수문학적 가뭄전망의 활용성 평가)

  • Son, Kyung Hwan;Bae, Deg Hyo
    • Journal of Korea Water Resources Association
    • /
    • 제48권7호
    • /
    • pp.581-593
    • /
    • 2015
  • This study constructs the drought outlook system using ESP(Ensemble Streamflow Prediction) method and evaluates its utilization for drought prediction. Historical Runoff(HR) was estimated by employing LSM(Land Surface Model) and the observed meteorological, hydrological and topographical data in South Korea. Also Predicted Runoff(PR) was produced for different lead times(i.e. 1-, 2-, 3-month) using 30-year past meteorological data and the initial soil moisture condition. The HR accuracy was higher during MAM, DJF than JJA, SON, and the prediction accuracy was highly decreased after 1 month outlook. SRI(Standardized Runoff Index) verified for the feasibility of domestic drought analysis was used for drought outlook, and PR_SRI was evaluated. The accuracy of PR_SRI with lead times of 1- and 2-month was highly increased as it considered the accumulated 1- and 2-month HR, respectively. The Correlation Coefficient(CC) was 0.71, 0.48, 0.00, and Root Mean Square Error(RMSE) was 0.46, 0.76, 1.01 for 1-, 2- and 3-month lead times, respectively, and the accuracy was higher in arid season. It is concluded that ESP method is applicable to domestic drought prediction up to 1- and 2-month lead times.

Development and evaluation of dam inflow prediction method based on Bayesian method (베이지안 기법 기반의 댐 예측유입량 산정기법 개발 및 평가)

  • Kim, Seon-Ho;So, Jae-Min;Kang, Shin-Uk;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • 제50권7호
    • /
    • pp.489-502
    • /
    • 2017
  • The objective of this study is to propose and evaluate the BAYES-ESP, which is a dam inflow prediction method based on Ensemble Streamflow Prediction method (ESP) and Bayesian theory. ABCD rainfall-runoff model was used to predict monthly dam inflow. Monthly meteorological data collected from KMA, MOLIT and K-water and dam inflow data collected from K-water were used for the model calibration and verification. To estimate the performance of ABCD model, ESP and BAYES-ESP method, time series analysis and skill score (SS) during 1986~2015 were used. In time series analysis monthly ESP dam inflow prediction values were nearly similar for every years, particularly less accurate in wet and dry years. The proposed BAYES-ESP improved the performance of ESP, especially in wet year. The SS was used for quantitative analysis of monthly mean of observed dam inflows, predicted values from ESP and BAYES-ESP. The results indicated that the SS values of ESP were relatively high in January, February and March but negative values in the other months. It also showed that the BAYES-ESP improved ESP when the values from ESP and observation have a relatively apparent linear relationship. We concluded that the existing ESP method has a limitation to predict dam inflow in Korea due to the seasonality of precipitation pattern and the proposed BAYES-ESP is meaningful for improving dam inflow prediction accuracy of ESP.