Browse > Article
http://dx.doi.org/10.14191/Atmos.2013.23.4.377

Changes in the Low Latitude Atmospheric Circulation at the End of the 21st Century Simulated by CMIP5 Models under Global Warming  

Jung, Yoo-Rim (Climate Research Laboratory, National Institute of Meteorological Research, KMA)
Choi, Da-Hee (Climate Prediction Division, Korea Meteorological Administration)
Baek, Hee-Jeong (Climate Research Laboratory, National Institute of Meteorological Research, KMA)
Cho, Chunho (Climate Research Laboratory, National Institute of Meteorological Research, KMA)
Publication Information
Atmosphere / v.23, no.4, 2013 , pp. 377-387 More about this Journal
Abstract
Projections of changes in the low latitude atmospheric circulation under global warming are investigated using the results of the CMIP5 ensemble mean. For this purpose, 30-yr periods for the present day (1971~2000) and the end of the $21^{st}$ century (2071~2100) according to the RCP emission scenarios are compared. The wintertime subtropical jet is projected to strengthen on the upper side of the jet due to increase in meridional temperature gradient induced by warming in the tropical upper-troposphere and cooling in the stratosphere except for the RCP2.6. It is also found that a strengthening of the upper side of the wintertime subtropical jet in the RCP2.6 due to tropical upper-tropospheric warmings. Model-based projection shows a weakening of the mean intensity of the Hadley cell, an upward shift of cell, and poleward shift of the Hadley circulation for the winter cell in both hemispheres. A weakening of the Walker circulation, which is one of the most robust atmospheric responses to global warming, is also projected. These results are consistent with findings in the previous studies based on CMIP3 data sets. A weakening of the Walker circulation is accompanied with decrease (increase) in precipitation over the Indo-Pacific warm pool region (the equatorial central and east Pacific). In addition, model simulation shows a decrease in precipitation over subtropical regions where the descending branch of the winter Hadley cell in both hemispheres is strengthened.
Keywords
Low latitude atmospheric circulation; global warming; RCP; CMIP5;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Butler, A. H., D. W. J. Thompson, and R. Heikes, 2010: The steady-state atmospheric circulation response to climate change-like thermal forcings in a simple general circulation model. J. Climate, 23, 3474-3496.   DOI   ScienceOn
2 Collins, M., and Coauthors, 2005: El Nino- or La Nina-like climate change?. Clim. Dynam., 24, 89-104, doi: 10.1007/s00382-004-0478-x.   DOI
3 Eyring, V., and Coauthors, 2013: Long-term ozone changes and associated climate impacts in CMIP5 simulations. J. Geophys. Res. Atmos., doi:10.1002/jgrd.50316 (Accepted).   DOI   ScienceOn
4 Frierson, D. M. W., J. Lu, and G. Chen, 2007: Width of the Hadley cell in simple and comprehensive general circulation models. Geophys. Res. Lett., 34, L18804, doi:10.1029/2007GL031115.   DOI   ScienceOn
5 Gastineau, G., H. L. Treut, and L. Li, 2008: Hadley circulation changes under global warming conditions indicated by coupled climate models. Tellus, 60A, 863-884.
6 Gastineau, G., L. Li, and H. L. Treut, 2009: The Hadley and Walker circulation changes in global warming conditions described by idealized atmospheric simulations. J. Climate, 22, 3993-4013.   DOI   ScienceOn
7 Gill, A. E., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.
8 Hegerl, G. C., and Coauthors, 2007: Understanding and attributing climate change, Climate Change 2007: The Physical Science Basis. S. Solomon et al., Eds., Cambridge University Press, 663-745.
9 Houghton, J. T., and Coauthors, 2001: Climate Change 2001, The Scientific Basis. Cambridge University Press, London, 881 pp.
10 Kang, S. M., and L. M. Polvani, 2011: The interannual relationship between the latitude of the eddy-driven jet and the edge of the Hadley cell. J. Climate, 24, 563-568.   DOI   ScienceOn
11 Kang, S. M., and J. Lu, 2012: Expansion of the Hadley cell under global warming: winter versus summer. J. Climate, 25, 8387-8393.   DOI   ScienceOn
12 Lambert, S. J., and G. J. Boer, 2001: CMIP1 evaluation and intercomparison of coupled climate models. Clim. Dynam., 17, 83-106.   DOI   ScienceOn
13 Lim, E.-P., and I. Simmonds, 2009: Effect of tropospheric temperature change on the zonal mean circulation and SH winter extratropical cyclones. Clim. Dynam., 33, 19-32, doi:10.1007/s00382-008-0444-0.   DOI
14 Lorenz, D. J., and E. T. DeWeaver, 2007: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res., 112, D10119, doi:10.1029/2006JD008087.   DOI
15 Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, doi:10.1029/2006GL028443.   DOI   ScienceOn
16 Lu, J., G. Chen, and D. M. W. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Nino versus global warming. J. Climate, 21, 5835-5851.   DOI   ScienceOn
17 Meehl, G. A., and Coauthors, 2007: Global climate projections, Climate Change 2007: The Physical Science Basis. S. Solomon et al., Eds., Cambridge University Press, 747-845.
18 Meehl, G. A., and Coauthors, 2012: Climate system response to external forcings and climate change projections in CCSM4. J. Climate, 25, 3661-3683.   DOI   ScienceOn
19 Mitas C. M., and A. Clement, 2006: Recent behavior of the Hadley cell and tropical thermodynamics in climate models and reanalysis. Geophys. Res. Lett., 33, L01810, doi:10.1029/2005GL024406.   DOI   ScienceOn
20 Nguyen, H., B. Timbal, A. Evans, C. Lucas, and I. Smith, 2012: The Hadley circulation in reanalysis: climatology, variability and change. J. Climate, doi:10.1175/JCLI-D-12-00224.1, in press.   DOI   ScienceOn
21 Santer, B. D., and Coauthors, 2003: Behavior of tropopause height and atmospheric temperature in models, reanalysis, and observations: decadal changes. J. Geophys. Res., 108, 4002, doi:10.1029/2002JD002258.   DOI
22 Oort, A. H., and J. J. Yienger, 1996: Observed interannual variability in the Hadley circulation and its connection to ENSO. J. Climate, 9, 2751-2767.   DOI   ScienceOn
23 Polvani, L. M., D. W. Waugh, G. J. P. Correa, and S.-W. Son, 2011: Stratospheric ozone depletion: the main driver of twentieth-century atmospheric circulation changes in the southern hemisphere. J. Climate, 24, 795-812.   DOI   ScienceOn
24 Randall, D. A., and Coauthors, 2007: Climate models and their evaluation, Climate Change 2007: The Physical Science Basis. S. Solomon et al., Eds., Cambridge University Press, 589-662.
25 Yamaguchi, K., and A. Noda, 2006: Global warming patterns over the North Pacific: ENSO versus AO. J. Meteor. Soc. Japan, 84, 225-241.
26 Son, S.-W., N. F. Tandon, L. M. Polvani, and D. W. Waugh, 2009: Ozone hole and Southern Hemisphere climate change. Geophys. Res. Lett., 36, L15705, doi:10.1029/2009GL038671.   DOI   ScienceOn
27 Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 4316-4340.   DOI   ScienceOn