• Title/Summary/Keyword: ensemble flow simulation

Search Result 14, Processing Time 0.023 seconds

Measurement of Flow Field through a Staggered Tube Bundle using Particle Image Velocimetry (PIV기법에 의한 엇갈린 관군 배열 내부의 유동장 측정)

  • 김경천;최득관;박재동
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.595-601
    • /
    • 2001
  • We applied PIV method to obtain instantaneous and ensemble averaged velocity fields from the first row to the fifth row of a staggered tube bundle. The Reynolds number based on the tube diameter and the maximum velocity was set to be 4,000. Remarkably different natures are observed in the developing bundle flow. Such differences are depicted in the mean recirculating bubble length and the vorticity distributions. The jet-like flow seems to be a dominant feature after the second row and usually skew. However, the ensemble averaged fields show symmetric profiles and the flow characteristics between the third and fourth measuring planes are not so different. comparison between the PIV data and the RANS simulation yields severe disagreement in spite of the same Reynolds number. It can be explained that the distinct jet-like unsteady motions are not to be accounted in th steady numerical analysis.

  • PDF

Element-free simulation of dilute polymeric flows using Brownian Configuration Fields

  • Tran-Canh, D.;Tran-Cong, T.
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.1
    • /
    • pp.1-15
    • /
    • 2004
  • The computation of viscoelastic flow using neural networks and stochastic simulation (CVFNNSS) is developed from the point of view of Eulerian CONNFFESSIT (calculation of non-Newtonian flows: finite elements and stochastic simulation techniques). The present method is based on the combination of radial basis function networks (RBFNs) and Brownian configuration fields (BCFs) where the stress is computed from an ensemble of continuous configuration fields instead of convecting discrete particles, and the velocity field is determined by solving the conservation equations for mass and momentum with a finite point method based on RBFNs. The method does not require any kind of element-type discretisation of the analysis domain. The method is verified and its capability is demonstrated with the start-up planar Couette flow, the Poiseuille flow and the lid driven cavity flow of Hookean and FENE model materials.

Fluid flow simulation in carbon nano tube using molecular dynamics (탄소나노튜브 내 유체유동의 분자동역학 모사)

  • 우영석;이우일
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.347-354
    • /
    • 2003
  • The dynamics of fluid flow through nanomachines is completely different from that of continuum. In this study, molecular dynamics simulations were performed for the flow of helium, neon, argon inside carbon(graphite) nanotubes of several sizes. The fluid was introduced into the nanotube at a given initial velocity according to given temperature. Diffusion coefficients were evaluated by Green-Kubo equation derived from Einstein relationship. The behaviour of the fluid was strongly dependent on the density of fluid and tube diameter, not on the tube length. It was found that the diffusion Coefficients increased With decreasing the density of molecules and increasing the diameter and temperature.

  • PDF

Approximation for the coherent structures in the planar jet flow (평면 제트류 응집구조의 근사적 표현에 관한 연구)

  • 이찬희;이상환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.751-762
    • /
    • 1995
  • The snapshot method is introduced to approximate the coherent structures of planar jet flow. The numerical simulation of instantaneous flow field is analyzed by SIMPLE algorithm. An ensemble of realizations is collected using a sampling condition that corresponds to the passage of a large scale vortex at positions 4 and 6 diameters downstream from the nozzle. With snapshot mothod we could treat the data efficiently and approximate coherent structures inhered in the planar jet flow successfully 94% of total turbulent kinetic energy with 10 terms of Karhunen-Loeve expansions. Finally, In accordance with the recent trend to try to explain and model turbulence phenomena with the existence of coherent structures, in the present study, we express the underlying coherent structures of planar jet flow in the minimum number of modes by calculating Karhunen-Loeve expansions in order to improve to understanding of jet flow and to make the information storage and management in computers easier.

Uncertainty Analysis of SWAT Model using Monte Carlo Technique and Ensemble Flow Simulations (몬테카를로 기법과 앙상블 유량모의 기법에 의한 SWAT 모형의 불확실성 분석)

  • Kim, Phil-Shik;Kim, Sun-Joo;Lee, Jae-Hyouk;Jee, Yong-Keun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.4
    • /
    • pp.57-66
    • /
    • 2009
  • 수학적 모델은 수량과 수질의 예측을 위해 현장 조사의 대안으로 사용되어지며 이러한 모델의 사용과 실측에 불확실성이 존재하게 된다. 불확실성에 대한 많은 연구들이 진행되어 왔으나 시나리오에 의한 모델링 과정에서 발생하는 불확실성에 대한 연구는 미흡한 실정이다. 본 연구에서는 산림이 농경지와 목초지로의 변화에 따른 시나리오를 설계한 후 시나리오 적용에 따른 SWAT (Soil and Water Assessment Tool) 매개변수의 불확실성을 분석하고자 하였다. 몬테카를로 기법 (Monte Carlo simulation)을 이용하여 각 매개변수별 1,000개의 난수를 발생하였으며 앙상블 유량모의 기법을 이용하여 미국 Alabama주 카하바강 상류 (50,967ha)를 대상으로 각 난수별 100개의 유량을 통해 불확실성을 분석하였다. 분석 결과 산림지역이 농경지와 목초지로 변화 되었을 때 유출량이 증가하는 것으로 분석되었으며, 임야가 목초지 보다 농경지로 변화되었을 때 유출량은 더욱 증가하는 것으로 나타났다. 각 시나리오별 SWAT 매개변수의 불확실성은 AWC (Available water capacity), CN (Curve number), GWREVAP (groundwater re-evaporation coeffeicient), REVAPMN (minimum depth of water in shallow aquifer for re-evaporation to occur)순으로 크게 나타났으며, Ksat (Saturated hydraulic conductivity)와 ESCO(Soil evaporation compensation factor)는 유출량의 변화에 큰 영향을 미치지 못하는 것으로 분석되었다. 토지피복별 산림 면적이 클 경우 불확실성이 크게 나타나 산림이 목초지와 농경지로 변함에 따라 불확실성은 감소하는 것으로 나타났다.

Comparative assessment and uncertainty analysis of ensemble-based hydrologic data assimilation using airGRdatassim (airGRdatassim을 이용한 앙상블 기반 수문자료동화 기법의 비교 및 불확실성 평가)

  • Lee, Garim;Lee, Songhee;Kim, Bomi;Woo, Dong Kook;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.761-774
    • /
    • 2022
  • Accurate hydrologic prediction is essential to analyze the effects of drought, flood, and climate change on flow rates, water quality, and ecosystems. Disentangling the uncertainty of the hydrological model is one of the important issues in hydrology and water resources research. Hydrologic data assimilation (DA), a technique that updates the status or parameters of a hydrological model to produce the most likely estimates of the initial conditions of the model, is one of the ways to minimize uncertainty in hydrological simulations and improve predictive accuracy. In this study, the two ensemble-based sequential DA techniques, ensemble Kalman filter, and particle filter are comparatively analyzed for the daily discharge simulation at the Yongdam catchment using airGRdatassim. The results showed that the values of Kling-Gupta efficiency (KGE) were improved from 0.799 in the open loop simulation to 0.826 in the ensemble Kalman filter and to 0.933 in the particle filter. In addition, we analyzed the effects of hyper-parameters related to the data assimilation methods such as precipitation and potential evaporation forcing error parameters and selection of perturbed and updated states. For the case of forcing error conditions, the particle filter was superior to the ensemble in terms of the KGE index. The size of the optimal forcing noise was relatively smaller in the particle filter compared to the ensemble Kalman filter. In addition, with more state variables included in the updating step, performance of data assimilation improved, implicating that adequate selection of updating states can be considered as a hyper-parameter. The simulation experiments in this study implied that DA hyper-parameters needed to be carefully optimized to exploit the potential of DA methods.

Comparative Analysis of Subsurface Estimation Ability and Applicability Based on Various Geostatistical Model (다양한 지구통계기법의 지하매질 예측능 및 적용성 비교연구)

  • Ahn, Jeongwoo;Jeong, Jina;Park, Eungyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.4
    • /
    • pp.31-44
    • /
    • 2014
  • In the present study, a few of recently developed geostatistical models are comparatively studied. The models are two-point statistics based sequential indicator simulation (SISIM) and generalized coupled Markov chain (GCMC), multi-point statistics single normal equation simulation (SNESIM), and object based model of FLUVSIM (fluvial simulation) that predicts structures of target object from the provided geometric information. Out of the models, SNESIM and FLUVSIM require additional information other than conditioning data such as training map and geometry, respectively, which generally claim demanding additional resources. For the comparative studies, three-dimensional fluvial reservoir model is developed considering the genetic information and the samples, as input data for the models, are acquired by mimicking realistic sampling (i.e. random sampling). For SNESIM and FLUVSIM, additional training map and the geometry data are synthesized based on the same information used for the objective model. For the comparisons of the predictabilities of the models, two different measures are employed. In the first measure, the ensemble probability maps of the models are developed from multiple realizations, which are compared in depth to the objective model. In the second measure, the developed realizations are converted to hydrogeologic properties and the groundwater flow simulation results are compared to that of the objective model. From the comparisons, it is found that the predictability of GCMC outperforms the other models in terms of the first measure. On the other hand, in terms of the second measure, the both predictabilities of GCMC and SNESIM are outstanding out of the considered models. The excellences of GCMC model in the comparisons may attribute to the incorporations of directional non-stationarity and the non-linear prediction structure. From the results, it is concluded that the various geostatistical models need to be comprehensively considered and comparatively analyzed for appropriate characterizations.

Modeling of rheological behavior of nanocomposites by Brownian dynamics simulation

  • Song Young Seok;Youn Jae Ryoun
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.4
    • /
    • pp.201-212
    • /
    • 2004
  • Properties of polymer based nanocomposites depend on dispersion state of embedded fillers. In order to examine the effect of dispersion state on rheological properties, a new bi-mode FENE dumbbell model was proposed. The FENE dumbbell model includes two separate ensemble sets of dumbbells with different fric­tion coefficients, which simulate behavior of well dispersed and aggregated carbon nanotubes (CNTs). A new parameter indicating dispersion state of the CNT was proposed to account for degree of dispersion quantitatively as well as qualitatively. Rheological material functions in elongational, steady shear, and oscillatory shear flows were obtained numerically. The CNT/epoxy nanocomposites with different dis­persion state were prepared depending on whether a solvent is used for the dispersion of CNTs or not. Dis­persion state of the CNT in the epoxy nanocomposites was morphologically characterized by the field emission scanning electronic microscope and the transmission electron microscope images. It was found that the numerical prediction was in a good agreement with experimental results especially for steady state shear flow.

Long-term runoff simulation using rainfall LSTM-MLP artificial neural network ensemble (LSTM - MLP 인공신경망 앙상블을 이용한 장기 강우유출모의)

  • An, Sungwook;Kang, Dongho;Sung, Janghyun;Kim, Byungsik
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.2
    • /
    • pp.127-137
    • /
    • 2024
  • Physical models, which are often used for water resource management, are difficult to build and operate with input data and may involve the subjective views of users. In recent years, research using data-driven models such as machine learning has been actively conducted to compensate for these problems in the field of water resources, and in this study, an artificial neural network was used to simulate long-term rainfall runoff in the Osipcheon watershed in Samcheok-si, Gangwon-do. For this purpose, three input data groups (meteorological observations, daily precipitation and potential evapotranspiration, and daily precipitation - potential evapotranspiration) were constructed from meteorological data, and the results of training the LSTM (Long Short-term Memory) artificial neural network model were compared and analyzed. As a result, the performance of LSTM-Model 1 using only meteorological observations was the highest, and six LSTM-MLP ensemble models with MLP artificial neural networks were built to simulate long-term runoff in the Fifty Thousand Watershed. The comparison between the LSTM and LSTM-MLP models showed that both models had generally similar results, but the MAE, MSE, and RMSE of LSTM-MLP were reduced compared to LSTM, especially in the low-flow part. As the results of LSTM-MLP show an improvement in the low-flow part, it is judged that in the future, in addition to the LSTM-MLP model, various ensemble models such as CNN can be used to build physical models and create sulfur curves in large basins that take a long time to run and unmeasured basins that lack input data.

Hydrologic Utilization of Radar-Derived Rainfall (II) Uncertainty Analysis (레이더 추정강우의 수문학적 활용 (II): 불확실성 해석)

  • Kim Jin-Hoon;Lee Kyoung-Do;Bae Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.12 s.161
    • /
    • pp.1051-1060
    • /
    • 2005
  • The present study analyzes hydrologic utilization of optimal radar-derived rainfall by using semi-distributed TOPMODEL and evaluates the impacts of radar rainfall and model parametric uncertainty on a hydrologic model. Monte Carlo technique is used to produce the flow ensembles. The simulated flows from the corrected radar rainfalls with real-time bias adjustment scheme are well agreed to observed flows during 22-26 July 2003. It is shown that radar-derived rainfall is useful for simulating streamflow on a basin scale. These results are diagnose with which radar-rainfall Input and parametric uncertainty influence the character of the flow simulation uncertainty. The main conclusions for this uncertainty analysis are that the radar input uncertainty is less influent than the parametric one, and combined uncertainty with radar and Parametric input can be included the highest uncertainty on a streamflow simulation.