DOI QR코드

DOI QR Code

Uncertainty Analysis of SWAT Model using Monte Carlo Technique and Ensemble Flow Simulations

몬테카를로 기법과 앙상블 유량모의 기법에 의한 SWAT 모형의 불확실성 분석

  • Kim, Phil-Shik (Dept. of Biosystems Engineering, Aubum University) ;
  • Kim, Sun-Joo (Dept. of Civil & Environmental System Engineering, Konkuk University) ;
  • Lee, Jae-Hyouk (Dept. of Civil & Environmental System Engineering, Graduate School, Konkuk University) ;
  • Jee, Yong-Keun (Dept. of Civil & Environmental System Engineering, Konkuk University)
  • Published : 2009.07.31

Abstract

수학적 모델은 수량과 수질의 예측을 위해 현장 조사의 대안으로 사용되어지며 이러한 모델의 사용과 실측에 불확실성이 존재하게 된다. 불확실성에 대한 많은 연구들이 진행되어 왔으나 시나리오에 의한 모델링 과정에서 발생하는 불확실성에 대한 연구는 미흡한 실정이다. 본 연구에서는 산림이 농경지와 목초지로의 변화에 따른 시나리오를 설계한 후 시나리오 적용에 따른 SWAT (Soil and Water Assessment Tool) 매개변수의 불확실성을 분석하고자 하였다. 몬테카를로 기법 (Monte Carlo simulation)을 이용하여 각 매개변수별 1,000개의 난수를 발생하였으며 앙상블 유량모의 기법을 이용하여 미국 Alabama주 카하바강 상류 (50,967ha)를 대상으로 각 난수별 100개의 유량을 통해 불확실성을 분석하였다. 분석 결과 산림지역이 농경지와 목초지로 변화 되었을 때 유출량이 증가하는 것으로 분석되었으며, 임야가 목초지 보다 농경지로 변화되었을 때 유출량은 더욱 증가하는 것으로 나타났다. 각 시나리오별 SWAT 매개변수의 불확실성은 AWC (Available water capacity), CN (Curve number), GWREVAP (groundwater re-evaporation coeffeicient), REVAPMN (minimum depth of water in shallow aquifer for re-evaporation to occur)순으로 크게 나타났으며, Ksat (Saturated hydraulic conductivity)와 ESCO(Soil evaporation compensation factor)는 유출량의 변화에 큰 영향을 미치지 못하는 것으로 분석되었다. 토지피복별 산림 면적이 클 경우 불확실성이 크게 나타나 산림이 목초지와 농경지로 변함에 따라 불확실성은 감소하는 것으로 나타났다.

Keywords

References

  1. Arnold, J. G., R. Srinivasan, R. S. Muttiah, and J. R. Williams, 1998. Large-area hydrologic modeling and assessment: Part I. Model development. J. of American Water Resources Assocociation 34(1): 73-89 https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  2. Beck, M. B., 1987. Water quality modeling: a review of the analysis of uncertainty, Water Resources Research 23(8): 1393-1442 https://doi.org/10.1029/WR023i008p01393
  3. Beven, K. J., and A. M. Binely, 1992. The future of distributed models: model calibration and uncertainty prediction, Hydrological Processes 6: 279–.298 https://doi.org/10.1002/hyp.3360060305
  4. Bosch, J. M., and J. D. Hewlett, 1982. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration, J. of Hydrology 55(1-4): 3-23 https://doi.org/10.1016/0022-1694(82)90117-2
  5. Carpenter, T. M., and K. P. Georgakakos, 2004. Impacts of parametric and radar rainfall uncertainty on the ensemble streamflow simulations of a distributed hydrologic model, J. of Hydrology 298(1-4): 202-221 https://doi.org/10.1016/j.jhydrol.2004.03.036
  6. Collins, A. L., D. E. Walling, H. M. Sichingabul, and G. J. L. Leeks, 2001. Suspended sediment source fingerprinting in a small tropical catchment and some management implications, Applied Geography 21(4): 387-412 https://doi.org/10.1016/S0143-6228(01)00013-3
  7. DiLuzio, M., R. Srinivasan, J. G. Arnold, and S. L. Neitsch, 2002. ArcView interface for SWAT2000, User's Guide. TWRI report TR-193, Texas Water Resources Institute, College Station, Texas
  8. Gardner, R. H., and R. V. O’Neill, 1983. Parameter uncertainty and model predictions: A review of Monte Carlo results. In Uncertainty and Forecasting of Water Quality, 245. M. B. Beck and G. van Straten, eds. Berlin, Germany: Springer-Verlag
  9. Green, W. H., and G. A. Ampt, 1911. Studies on soil physics: 1. The flow of air and water through soils, J. of Agricultural Sciences 4: 11-24
  10. Gupta, H. V., S. Sorooshian, and P. O. Yapo, 1998. Toward improved calibration of hydrologic models: multiple and noncommensurable measures of information, Water Resources and Research 34(4): 751-763 https://doi.org/10.1029/97WR03495
  11. Haan, C. T., 2002. Statistical Methods in Hydrology. 2nd ed. Ames, Iowa: Iowa State Press
  12. Ham, J. H., C. G. Yoon, and P. L. Daniel, 2007. Integrated Watershed Modeling under Uncertainty, J. of the Korean Society of Agricultural Engineering 49(4): 13-22 (in Korean) https://doi.org/10.5389/KSAE.2007.49.4.013
  13. Hession, W. C., D. E. Storm, and C. T. Haan, 1996. Two-phase uncertainty analysis: An example using the universal soil loss equation. Transactions of the ASAE 39(4): 1309-1319 https://doi.org/10.13031/2013.27622
  14. Kannan, N., S. White, F. Worrall, and M. Whelan, 2003. Modelling pollutants in runoff from the Colworth experimental catchment. In Proc. 2nd International SWAT Conference, July 1–&4, 2003, Bari, Italy, TWRI Technical Report 266: 149–154
  15. Lee, S. U., Y. O. Kim, and D. R. Lee, 2005. Quantifying Uncertainty for the water balance analysis, J. of Korea Water Resources 38(4): 281-292 (in Korean) https://doi.org/10.3741/JKWRA.2005.38.4.281
  16. Malczewski, J., 2004. GIS-based land-use suitability analysis: a critical overview, Progress in Planning 62: 3-65 https://doi.org/10.1016/j.progress.2003.09.002
  17. Neitsch, S. L., J. G. Arnold, J. R. Kiniry, J. R. Williams, and K. W. King, 2002a. Soil and water assessment tool, theoretical documentation, version 2000. TWRI report TR-191, Texas Water Resources Institute, College Station, Texas
  18. Neitsch, S. L., J. G. Arnold, J. R. Kiniry, R. Srinivasan, and J. R. Williams, 2002b. Soil and water assessment tool, user's manual, version 2000. TWRI report TR- 192, Texas Water Resources Institute, College Station, Texas
  19. Neitsch, S. L., J. G. Arnold, J. R. Kiniry, and J. R. Williams, 2001. Soil and Water Assessment Tool: Theoretical documentation, version 2000. Temple, Texas: USDA-ARS
  20. NRC, 2001. Assessing the TMDL approach to water quality management. Committee to Access the Scientific Basis of the Total Maximum Daily Load Approach to Water Pollution Reduction, Water Science and Technology Board, Division on Earth and Life Studies, National Research Council, Washington, DC
  21. Santhi, C., J. G. Arnold, J. R. Williams, L. M. Hauck, and W. A. Dugas, 2001. Application of a watershed model to evaluate management effects on point and nonpoint source pollution, Transations of the ASAE 44(6): 1559-1570
  22. Sorroshian, S., and V. K. Gupta, 1995. Model alibration. IN: Sighn, V. P. (Ed.), Computer Models of Watershed Hydrology, Water Resources Publication, Highlands Ranch, CO.
  23. Spear, R. C., and G. M. Hornberger, 1980. Eutrophication in Peel Inlet II: identification of critical uncertainties via generalized sensitivity analysis, Water Research 14: 43-49 https://doi.org/10.1016/0043-1354(80)90040-8
  24. Spear, R. C., T. M. Grieb, and N. Shang, 1994. Parameter uncertainty and interaction in complex environmental models, Water Resources Research, 30 (11): 3159-3169 https://doi.org/10.1029/94WR01732
  25. USDA Soil Conservation Service, 1972. Section 4 – Hydrology, Chapters 4–10, National Engineering Handbook, UDSA, Washington, DC
  26. White, K. L., and I. Chaubey, 2005. Sensitivity analysis, calibration, and validation for a multisite and multivariable SWAT model. J. of American Water Resources Association 41(5): 1077-1089 https://doi.org/10.1111/j.1752-1688.2005.tb03786.x
  27. Yoon, C. G., 1994. Uncertainty analysis in stream water quality modeling, Ph.D. dissertation, Civil and Environmental Engineering, Rutgers University, New Brunswick, NJ, USA
  28. Yu, P. S., T. C. Yang, and S. J. Chen, 2001. Comparison of uncertainty analysis methods for a distributed rainfall-runoff model. J. of Hydrology 244(1-2): 43-59 https://doi.org/10.1016/S0022-1694(01)00328-6
  29. Zhang, H. X., and S. L. Yu, 2004. Applying the first-order error analysis in determining the margin of safety for total maximum daily load computations, J. of Environmental Engineering 130(6): 664-673 https://doi.org/10.1061/(ASCE)0733-9372(2004)130:6(664)