• Title/Summary/Keyword: enrichment factor (EF)

Search Result 48, Processing Time 0.03 seconds

The Geochemical Characteristics and Environmental Factors on the Marine Shellfish Farm in Namhae-po Tidal Flat of Taean (태안 남해포 갯벌 패류양식해역의 환경특성)

  • Choi, Yoon Seok;Park, Kwang Jae;Yoon, Sang Pil;Chung, Sang Ok;An, Kyoung Ho;Song, Jae Hee
    • The Korean Journal of Malacology
    • /
    • v.29 no.1
    • /
    • pp.51-63
    • /
    • 2013
  • To assess the effect of environmental factors on the sustainability of cultured production shellfish, we investigated the habitat characteristics of tidal flat (Namhae-po in Taean). We measured the physiochemical parameters (temperature, salanity, pH, dissolved oxygen and nutrients) and the geochemical characteristics (chemical oxygen demand, ignition loss, C/N ratio and C/S ratio). Surface sediments were collected from several site of tidal flat to examine the geochemical characteristics of both the benthic environment and heavy metal pollution. The grain size for research area of tidal flat were similar at the ratio of silt and clay in comparison with the other site of it. The C/N ratio was more than 5.0, reflecting the range arising from the mix of marine organism and organic matter. The C/S ratio (about 2.8) showed that survey area had anoxic or sub-anoxic bottom conditions. The enrichment factor (Ef) and index of accumulation rate (Igeo) of the metals showed that those research areas can be classified as heavily polluted, heavily to moderately polluted, or more or less unpolluted, respectively. Adult surf clam (Mactra veneriformis) density was highest at St. 2 (middle part of the Namhae-po), on the other hand, surf clam spat density was highest at St. 3 (lower part of the Namhae-po). Heavy rain, terrigenous suspended clay with fresh water from neighboring agricultural land, and severe high air temperature during summer could be thought as detrimental causes of spat and adult mortality in Namhae-po tidal flat. We suggested that the growth of shellfish in the tidal flat was effected by the various environmental conditions, so an improvement in the cultured method was needed.

Evaluation of Characteristics of Particle Composition and Pollution of Heavy Metals for Bottom Sediments in Cheonsu Bay, Korea -Comparison of the Sediments Environment of Farming Area and Non-farming Area (천수만 해저 퇴적물의 입도특성 및 중금속 오염도 평가 -어장해역과 비어장해역의 퇴적환경 비교-)

  • Kim, Jong-Gu;Jang, Hyo-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.4
    • /
    • pp.358-371
    • /
    • 2014
  • For the systematic scientific management in Cheonsu Bay of Korea, this study was conducedt to survey the particle composition, organic matter(I.L.) and heavy metals in farming and non-farming areas. The sediment of study area showed feature mixed property by sand, silt and clay. The farming area showed superior by fine-grained sediment, non-farming area showed superior by coarse-grained sediment. The organic pollution of farming area were appeared to be heavily polluted more than non-farming area. The concentration of total nitorgen in sediment was higher farming area than non-farming area. Also, in the case of heavy metals pollution in sediments, farming area was higher than non-farming area. The correlation analysis among to heavy metals, organic matter and particle size was found to have a good interrelationship. For evaluation of heavy metals pollution of sediments, three criteria are applied, Enrichment Factor(EF), Geoaccumulation index(Igeo) and NOAA criteria for sediment. In the case of EF, Heavy metals pollution was appeared to artificial effect all heavy metals if except Cu. In the case of Geoaccumulation index, Cu, Al, Pb was shown zero grade, that is non polluted group, and Cd, Hg, Cr was shown to 0~1 grade, that is mid polluted group, As was shown to 2 grade, that is moderately polluted group. In the case of NOAA, pollution levels of heavy metals except Cd belonged to a group of ERL(Effect range low)~ERM(Effect range median).

Assessment of Contamination and Geochemical Dispersion by Heavy Metals in Roadside Tree Leaves of Platanus occidentalis and Soils in the City of Seoul (서울시 가로수목 중 플라타너스 잎과 토양의 중금속 원소에 대한 지구화학적 분산과 오염평가)

  • Choo, Mi Kyung;Lee, Jin-Soo;Lee, Jeonghoon;Kim, Kyu-Han
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.405-420
    • /
    • 2014
  • To investigate geochemical characteristics of soil and atmospheric environments by anthropogenic source, we have analyzed and determined heavy metal concentrations of the surface soils beneath roadside trees and leaves of Platanus occidentalis from 52 points in Seoul during autumn 2001. For comparison of the contents of heavy metal for the soil and leaf, we have analyzed heavy metal contents of the surface soils beneath roadside trees and leaves from 2 points in rural area of Yesan during the same time period. The composition of heavy metals of soils are relatively high for Cd, Co, Cr and Ni in industrial area (IA, Industrial Area) and high for Cu, Pb and Zn in heavy traffic area (HTA, Heavy Traffic Area). The heavy metal contents of rural area in Seoul are higher than those in Yesan. The differences of chemical compositions between the washed and unwashed leaves are high for Cd, Cu, Pb and Zn in the HTA. The element couples of Cd-Co, Cr-Ni and Pb-Zn for the soils had shown a good correlation and their contamination sources could be similar. The relationship for Pb-Cu and Cu-Zn showed good correlation in Platanus leaves. The relationship between soils and unwashed leaves show a good correlation for Cr, Cu, Pb and Zn but low correlation for Cd, Co, Fe, Mn and Ni. It is thought that the Cr, Cu, Pb and Zn were derived from contaminants of soils, whereas Cd, Co, Fe, Mn and Ni were originated from atmospheric source. From the spatial variations of elements for soils and leaves, Ni and Cr were dominant in the soils of IA and Cd, Cu and Zn were dominant in those of HTA. The Contamination by Cd-Pb and Cu-Zn in unwashed leaves were analyzed to show similar patterns. Using the enrichment factors (EF) of heavy metals in unwashed leaves, the EF sequences were to be Cu, Zn, Pb, Mn, Co, Ni, Cd and Cr. We identified that Cu, Zn, Pb and Mn were most problematic of environmental hazard in Seoul.

Geochemical Characteristics and Heavy Metal Pollutions in the Surface Sediments of Oyster Farms in Goseong Bay, Korea (고성만 굴 양식장 표층퇴적물의 지화학적특성과 중금속 오염에 관한 연구)

  • Kang, Ju-Hyun;Lee, Sang-Jun;Jeong, Woo-Geon;Cho, Sang-Man
    • The Korean Journal of Malacology
    • /
    • v.28 no.3
    • /
    • pp.233-244
    • /
    • 2012
  • Goseong bay, located in southeast sea of Korea with an area of 2,100 ha, is a semi-enclosed bay well-known for oyster farming cultured in an extended range of 148 ha. The objective of this study is to provide the fundamental data in order to manage the effective sea area. A total 26 of surface sediment were collected from Goseong bay to evaluate their sedimentary environment and heavy metals. The loss on Ignition (LOI), C/N ratio, acid volatile sulfide (AVS) and heavy metals were analyzed. loss on ignition (LOI) of surface sediment range from 1.00% to 3.03% (average 2.00%). The carbonate content ranges from 0.52% to 4.29% (average 2.37%). C/N ratio of organic matter showed that most part of organic matter comes from neighboring continent. Acid volatile sulfide (AVS) value of surface sediment from 0.02 mg/g to 1.43 mg/g (average 0.24 mg/g). A ten element of surface sediments (Al, As, Cd, Cr, Cu, Hg, Ni, Pb, V, Zn) were calculated by enrichment factor (Ef) and the results show that some areas are highly polluted with respect Cu and Hg. The correlation matrix displays the existence of remarkable levels of correlation with both positive and negative values among different variable pairs. LOI and AVS showed both positive values. LOI and AVS values falls under 2% and 1%. Therefore, Goseong bay showed good in quality of sediment.

Characteristics of Heavy Metal Contamination in Residual Mine Tailings Near Abandoned Metalliferous Mines in Korea (국내 폐금속광산 주변 잔류광미의 중금속 오염특성)

  • Jung, Goo-Bok;Kim, Won-Il;Lee, Jong-Sik;Lee, Jae-Saeng;Park, Chan-Won;Koh, Mun-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.3
    • /
    • pp.222-231
    • /
    • 2005
  • Most of the tailings have been left without any management in abandoned metalliferous mines and have become the main source of heavy metal contamination of agricultural soils and crops in the these areas. To compare of environmental assessment of heavy metals in tailings derived from various 25-metalliferous mines in Korea, 3 different analysis methods such as water soluble, 0.1 M-HCl extractable, and total acid digestion method (aqua regia) were used. The chemical composition of water soluble in mine tailing were in the order ${SO_4}^{2-}>Ca^{2+}>Mn^{2+},\;Na^+,\;Al^{3+}>Mg^{2+},\;Fe^{3+}>Cl^-$. Specially, pH, EC, ${SO_4}^{2-},\;and\;Ca^{2+}$ concentrations in tailing varied considerably among the different mines. The average total concentrations of Cd, Cu, Pb, Zn, and As in tailing were 31.8, 708, 4,961, 2,275 and 3,235 mg/kg, respectively. Specially, the contents of Cd, Zn and As were higher than those of countermeasure values for soil contamination (Cd : 4, Zn : 700 and As : 15 mg/kg in soil) by Soil Environmental Conservation Act in Korea. The rates of water soluble heavy metals to total contents in tailings were in the order Cd > Zn > Cu > Pb > As. The rates of 0.1M-HCl extractable Cd, Cu, Pb, Zn, and As (1M-HCl) to total content were 17.4, 10.2, 6.5, 6.8 and 11.4% respectively. The enrichment factor of heavy metals in tailings were in the order As > Pb > Cd > Cu > Zn. The pollution index in tailing Au-Ag mine tailing were higher than those of other mine tailing. As a results of enrichment factor and pollution index for heavy metal contaminations in mine tailing of metalliferous mines, the main contaminants are mine waste materials including tailings.

Contamination Assessment of Heavy Metals in River Sediments (For the Surface Sediments from Nakdong River) (하천 퇴적물 내 중금속 오염도 평가에 관한 연구 (낙동강 수계 표층 퇴적물을 대상으로))

  • Kim, Shin;Ahn, Jungmin;Jung, Kangyoung;Lee, Kwonchul;Kwon, Heongak;Shin, Dongseok;Yang, Deukseok
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.4
    • /
    • pp.460-473
    • /
    • 2017
  • In order to certificate the contamination assessment of heavy metals in surface sediments from the Nakdong river. Surface sediments were collected of 24 sampling sites (main 14st., tributary 10st.) and analyzed for grain size heavy metals contents. Study area mainly composed of sand (avg. 94.1%) and mean grain size was $1.46{\Phi}$ on average. Heavy metals contents (avg. Al: 12.5%, Zn; 74.4, Cr: 45.3, Li: 26.0, Pb: 17.1, Ni: 10.5, Cu: 7.8, Cd: 0.22 mg/kg) were relatively high contents in the composed of fine sediments. In addition, the results of pearson's correlation coefficient showed that most heavy metals and grain size (silt and clay) were highly correlated. The contents of Zn (6st.) and Ni (1st.) evaluated as moderately polluted, Zn (6st.) evaluated as LEL when compared with sediment quality standard of USEPA and Ontario sediment quality guidelines. Most heavy metals contents were I levels that dose not affected the benthos when compared with sediment pollution evaluation standard of NIER. The results of EX, EF, Igeo and CF showed the contents of Zn, Pb and Cd exceed the background contents and distributing of anthropogenic pollution and evaluated as moderately polluted level. And Nm-08 were relatively high level of contamination in the study area. However as results of PLI (less than 1), all sampling sites were evaluated unpolluted level.

Distributions of Organic Matter and Heavy Metals in the Surface Sediment of Jaran Bay, Korea (자란만 표층 퇴적물 중 유기물과 중금속 농도분포)

  • Hwang, Hyunjin;Hwang, Dong-Woon;Lee, Garam;Kim, Hyung-Chul;Kwon, Jung-No
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.1
    • /
    • pp.78-91
    • /
    • 2018
  • In order to understand the distributions of organic matter and heavy metal concentrations in the surface sediment of Jaran Bay, we measured the grain size, total organic carbon (TOC), total nitrogen (TN), and heavy metals (As, Cd, Cr, Cu, Fe, Hg, Mn, Pb, and Zn) in surface sediments collected at 15 stations in this bay in November 2014. The sediment consisted of finer sediment such as mud and clay, with 8.6-9.8Ø($9.3{\pm}0.3$Ø) of mean grain size. The concentrations of TOC and TN in the sediment ranged from 1.51-2.39 % ($1.74{\pm}0.22%$) and 0.20-0.33 % ($0.23{\pm}0.03%$), respectively, and did not show spatial difference. The carbon to nitrogen ratio (C/N ratio) ranged from 5-10, indicating that organic matter in the sediment originated from oceanic sources such as animal by-products from fish and shellfish farms. The concentrations of Cr, Fe, and Mn were much higher in the mouth of the bay than in the inner bay, and the concentrations of As, Cd, Cu, Hg, Pb, and Zn showed an opposite distribution pattern. Based on the results of the sediment quality guidelines (SQGs), enrichment factor (EF), geoaccumulation index ($I_{geo}$), pollutant load index (PLI), and ecological risk index (ERI), the surface sediment in Jaran Bay is not polluted or only slightly polluted with Cd, Cr, Cu, Hg, Pb, and Zn, whereas it is moderately to strongly polluted with As. In particular, some regions in the bay were identified as having a considerable risk status, indicating that metal concentration in the sediment could impact benthic organisms. Thus, the systematic management for marine and land sources of organic matter and heavy metals around Jaran Bay is necessary in order to ensure seafood safety and maintain sustainable production on shellfish farms.

Vertical Profiles and Assessment of Trace Metals in Sediment Cores From Outer Sea of Lake Shihwa, Korea (시화호 외측 해역 주상 퇴적물 내 미량금속 수직분포 특성 및 오염도 평가)

  • Ra, Kongtae;Kim, Joung-Keun;Kim, Eun-Soo;Kim, Kyung-Tae;Lee, Jung-Moo;Kim, Eu-Yeol
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.2
    • /
    • pp.71-81
    • /
    • 2013
  • Trace metal concentration in sediment cores from the outer sea of Lake Shihwa were determined to study the vertical profiles of metal concentrations and to evaluate the levels of metal contamination. Sediment pollution assessment was carried out using enrichment factor (EF) and geo-accumulation index (Igeo). The mean concentration of metals were 58.8 mg/kg for Cr, 10.3 mg/kg for Co, 22.8 mg/kg for Ni, 18.1 mg/kg for Cu, 74.0 mg/kg for Zn, 6.75 mg/kg for As, 0.14 mg/kg for Cd, 27.4 mg/kg for Pb and 0.026 mg/kg for Hg, respectively. The mean EF values for Cu, Zn, As, Cd and Hg were greater than 1.5 in sediment cores, indicating that these metals in sediments are slightly enriched by anthropogenic activities. The geo-accumulation index (Igeo) suggested unpolluted status for metals of sediments collected from outer see of Lake Shihwa. Igeo values for Cu and Hg nearby LNG station (site C, D, E) ranged from 1 to 2, indicating moderately to unpolluted pollution status for those metals. Even if the higher concentrations of trace metals nearby LNG station were observed, there is significantly positive relationship between Al and trace metals. Thus, the sediment grain size plays an important roles in influencing the distribution of trace metals in sediment cores from the outer sea of Lake Shihwa. Based on the comparison with sediment quality guidelines such as threshold effect level and probable effect level in Korea, the concentration of metals in sediments from outer sea of Lake Shihwa are likely to result in no harmful effects on sediment-dwelling organisms.