• 제목/요약/키워드: enhanced biodegradation

검색결과 101건 처리시간 0.023초

Enhanced reutilization value of shrimp-shell waste via fed-batch biodegradation with higher production of reducing sugar, antioxidant, and DNA protective compounds

  • Rashid, Harun Ar;Jung, Hyun Yi;Kim, Joong Kyun
    • Fisheries and Aquatic Sciences
    • /
    • 제21권10호
    • /
    • pp.33.1-33.11
    • /
    • 2018
  • As a process for commercial application, production of reducing sugar, antioxidant, and DNA protective compounds from shrimp-shell powder was investigated in a fed-batch biodegradation using Bacillus cereus EW5. The fed-batch biodegradation was operated in a 5-L bioreactor for 96 h according to three times pulse-feeding strategy. On the basis of the equal working volume (3 L), the fed-batch biodegradation showed a better production of the target compounds than the batch biodegradation, with higher cell density and shortened biodegradation period. The maximum values of the target compounds were 0.297 mg/mL of reducing sugar, 92.35% DPPH radical scavenging activity, 98.16% ABTS radical scavenging activity, and 1.55 reducing power at $A_{700}$, which were approximately 12.1, 3.4, 5.2, and 8.4% enhanced, respectively, compared with those obtained from the batch biodegradation. The fed-batch culture supernatant also showed the enhanced DNA damage inhibition activity than the batch culture supernatant. As a result, the fed-batch biodegradation accompanied by high cell density could produce more useful compounds, enabling an increase in the reutilization value of shrimp-shell waste.

Enhanced Biodegradation of Contaminated Soil by Biosurfactant, Sophorolipid

  • Kang, Seok-Whan;Cho, Kwi-Joon;Kim, Eun-Ki
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 1998년도 공동 심포지엄 및 추계학술발표회
    • /
    • pp.178-182
    • /
    • 1998
  • Bioremediation techniques have proved to be effective for restoring petroleum-contaminated soils. however some limitations still exist, especially biodegradation of hydrophobic organic compounds(HOCs) in soil is limited by their low solubility and sorption to solid surfaces. The principal objective of this study was to evaluate the effectiveness of biosurfactant sophorolipid on the biodegradation of hydrocarbons in soil. Experimental results showed that sophorolipid was not toxic to the HOC-degrading bacteria and enhanced biodegradation of HOCs in soil better than synthetic surfactants. when these models were treated with 1000mg/soil kg sophorolipid.

  • PDF

반응표면 분석법을 이용한 트리클로로에틸렌의 공대사적 분해조건 최적화 (Optimization of Cometabolic Trichloroethylene Degradation Conditions by Response Surface Analysis)

  • 윤성준
    • KSBB Journal
    • /
    • 제15권4호
    • /
    • pp.393-397
    • /
    • 2000
  • The cometaboic biodegradation conditionso f trichloroethylene(TCE) by Burkholderia cepacia G4 were optimized using response surface analysis. The experimental sets of phenol concentration temperature and pH were designed using central composite experimental design. The optimal conditions of phenol concentration temperature and pH were determined to be 0.91 ppm 21.5$^{\circ}C$ and 7.65 respectively by the Ridge analysis of the contour plot for TCE biodegradation rates. The TCE biodegradation rate could be enhanced up to 2.43 nmol.mg protein$.$min by response surface methodology.

  • PDF

Effect of cyclodextrin glucanotransferase enzyme in biodegradation of diesel oil

  • Sivaraman, C.;Ganguly, Anasuya;Mutnuri, Srikanth
    • Advances in environmental research
    • /
    • 제1권2호
    • /
    • pp.97-108
    • /
    • 2012
  • Microbial degradation of hydrocarbons is found to be an attractive process for remediation of contaminated habitats. However the poor bioavailability of hydrocarbons results in low biodegradation rates. Cyclodextrins are known to increase the bioavailability of variety of hydrophobic compounds. In the present work we purified the Cyclodextrin Glucanotransferase (CGTase) enzyme which is responsible for converting starch into cyclodextrins and studied its role on biodegradation of diesel oil contaminated soil. Purification of CGTase from Enterobacter cloacae was done which resulted in 6 fold increase in enzyme activity. The enzyme showed maximum activity at pH 7, temperature $60^{\circ}C$ with a molecular weight of 66 kDa. Addition of purified CGTase to the treatment setup with Pseudomonas mendocina showed enhanced biodegradation of diesel oil ($57{\pm}1.37%$) which was similar to the treatment setup when added with Pseudomonas mendocina and Enterobacter cloacae ($52.7{\pm}6.51%$). The residual diesel oil found in treatment setup added with Pseudomonas mendocina at end of the study was found to be $73{\pm}0.21%$. Immobilization of Pseudomonas mendocina on alginate containing starch also led to enhanced biodegradation of hydrocarbons in diesel oil at 336 hours.

계면활성제를 적용한 오염토양 복원을 위한 모델링 연구 : 생물 복원 공정 (Evaluation of Surfactant Addition for Soil Remediation by Modeling Study : II. Bioremediation Process)

  • 우승한;박종문
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제8권2호
    • /
    • pp.44-54
    • /
    • 2003
  • 토양 슬러리 시스템에서 유해물질의 미생물 분해시 계면활성제를 고려한 속도론적 모델을 개발하였다. 이 모델은 오염물질과 계면활성제의 분배, 미생물의 수용액상, 미셀상, 흡착상 분해, 계면활성제 첨가에 의한 대상물질 용해, 대상물질의 물질전달을 포함한다. 오염물질은 phenanthrene, 계면활성제는 Triton X-100, Triton NP-10, Igepal CA-720, Brij 30을 적용하였다. 미셀상 분해가 존재할 경우 매우 낮은 미셀상 이용도에서도 전체 분해속도를 크게 향상시킬 수 있었다. 미셀상 이용성이 존재하는 경우와 그렇지 않은 경우 모두 계면활성제 농도가 증가할수록 수용액상 농도가 감소하여 전체 분해속도는 감소하였다. 흡착상 분해는 수용액상 분해나 미셀상 분해와 비교하여 전체 분해속도에 미치는 영향이 적었다. 본 모델은 계면활성제를 이용한 오염토양 생물복원시 계면활성제 탐색과 최적 공정 설계에 활용될 수 있을 것이다.

Enhanced In-situ Mobilization and Biodegradation of Phenanthrens from Soil by a Solvent/Surfactant System

  • Kim, Eun-Ki;Ahn, Ik-Sung;L.W.Lion;M.L.Shuler
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권4호
    • /
    • pp.716-719
    • /
    • 2001
  • The mobilization and biodegradation of phenanthrene in soil was enhanced by using paraffin oil, which was stabilized by the addition of a surfactant (Brji 30). The ratio of paraffin oil/Brij 30 was determined by measuring the change in the critical micelle concentration. When only surfactant was used, the stabilized paraffin oil emulsion could dissolve more phenanthrene in the water phase. Column experiment showed increased phenanthrene mobilization from the contaminated soil. The phenanthrene mobilized in the paraffine oil/Brij 30 emulsion was biodegraded faster than that in water phase or surfactant solution. This result indicates that a paraffin oil/surfactant system can be effectively used for the removal of PAH from contaminated soil.

  • PDF

Burkholderia cepacia G4에 의한 트리클로로에틸렌의 공동대사적 분해에 미치는 성장기질의 영향 (Effects of Growth Substrates on Cometabolic Biodegradation of Trichloroethylene by Burkholderia cepacia G4)

  • 예병대;박성훈;이은열
    • KSBB Journal
    • /
    • 제15권5호
    • /
    • pp.474-481
    • /
    • 2000
  • The effects of growth substrates such as toluene and phenol on cometabolic biodegradation of trichloroethylene (TCE) by Burkholderia cepacia G4 were investigated. The dual effects of primary substrate on TCE biodegradation, stimulatory effects of toluene and phenol at low concentrations (0.5∼2 ppm & 0.1∼0.5 ppm, respectively) and a competitive inhibition at high concentration, were observed in batch experiments. These stimulatory effects of toluene and phenol were found to be due to the increments in the amount of reducing power like NADH which could be generated during the assimilation of toluene and phenol as the carbon and energy source. The efficiency of TCE biodegradation in trickling biofilm reactor (TBR) could be also enhanced up to the TCE removal efficiency of 58.1% by the supply of appropriate amounts of phenol (0.94∼4.7 ppm).

  • PDF

Optimal Remediation Design Considering Effects of Degradation Processes : Pumping strategy with Enhanced Natural Attenuation

  • Park Dong-Kyu;Lee Kang-Kun
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2005년도 총회 및 춘계학술발표회
    • /
    • pp.371-374
    • /
    • 2005
  • We accomplished optimization for pump and treat (P&T) designs in consideration of degradation processes such as retardation and biodegradation, which are significant for contaminant fate in hydrogeology. For more desirable remediation, optimal pumping duration and minimum pumping rate constraint problems are studied. After a specific P&T duration, it replaces the P&T with the enhanced natural attenuation (ENA), which induces aerobic biodegradation by maintaining oxygen concentration. The design in this strategy carries out the optimization for the number and locations of oxygen injection wells.

  • PDF

Implications of Fullerene-60 upon in-vitro LDPE Biodegradation

  • Sah, Aditi;Kapri, Anil;Zaidi, M.G.H.;Negi, Harshita;Goel, Reeta
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권5호
    • /
    • pp.908-916
    • /
    • 2010
  • Fullerene-60 nanoparticles were used for studying their effect on the low-density polyethylene (LDPE) biodegradation efficiency of two potential polymer-degrading consortia comprising three bacterial strains each. At a concentration of 0.01% (w/v) in minimal broth lacking dextrose, fullerene did not have any negative influence upon the consortia growth. However, fullerene was found to be detrimental for bacterial growth at higher concentrations (viz., 0.25%, 0.5%, and 1%). Although addition of 0.01% fullerene into the biodegradation assays containing 5mg/ml LDPE subsided growth curves significantly, subsequent analysis of the degraded products revealed an enhanced biodegradation. Fourier transform infrared spectroscopy (FT-IR) revealed breakage and formation of chemical bonds along with the introduction of ${\nu}C$-O frequencies into the hydrocarbon backbone of LDPE. Moreover, simultaneous thermogravimetric-differential thermogravimetry-differential thermal analysis (TG-DTG-DTA) revealed a higher number of decomposition steps along with a 1,000-fold decrease in the heat of reactions (${\Delta}H$) in fullerene-assisted biodegraded LDPE, suggesting the probable formation of multiple macromolecular byproducts. This is the first report whereby fullerene-60, which is otherwise considered toxic, has helped to accelerate the polymer biodegradation process of bacterial consortia.

Lab-Scale Biosparging Study to Remediate Diesel-Contaminated Soil and Groundwater : the effect of air injection rate and pattern

  • 조수형;이시진;권순열;장순웅
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.462-466
    • /
    • 2003
  • This study was conducted to examine the potential of biosparging process in removing diesel contaminated soil and groundwater. The experiment was carried out lab-scale biosparging reactor and the biodegradation rate of diesel was evaluated as function of air injection rate and pattern. When renter was operated as air injection rate of 1000$m\ell$/min and pulsed air injection(15min pulse, 15min downtime), DO concentration in the renter was higher than another operating condition. The evidence for biodegradation of diesel was the $O_2$ utilization and $CO_2$ product following the cessation of sparging. Especially, air injection rate of 2000$m\ell$/min and pulsed air injection(15min pulse, 15min downtime) enhanced the diesel biodegradation during the operating. After 120day, the biodegradation rate of diesel was decreased as the lack of carbon source.

  • PDF