• Title/Summary/Keyword: engineering structures

Search Result 21,715, Processing Time 0.046 seconds

A Study on the Evaluation of Radiation Safety in Opened-Ceiling-Facilities for Radiography Testing (천장 개방형 RT 사용시설의 방사선 안전성 평가 연구)

  • Sung-Hoe, Heo;Won-Seok, Park;Seung-Uk, Heo;Byung-In, Min
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.741-749
    • /
    • 2022
  • Radiography-Testing that verify the quality of welding structures without destruction are overwhelmingly used in industries, but many safety precautions are required as radiation is used. The workers for Radiography-Testing perform the inspection by moving the Iridium-192 radiation source embedded in the transport container of the gamma-ray irradiator within or outside the facility. The general facility is completely blocked about radiation from the outside with thick concrete, but if it is difficult for worker to handle object of inspection, facilities ceiling can be opened. A general facility may be constructed using a theoretical dose evaluation method because all exterior facilities are blocked, but if the ceiling is open, it is not appropriate to evaluate radiation safety with a simple theoretical calculation method due to the skyshine effect. Therefore, in this study, the radiation safety of the facility was evaluated in the actual field through an ion chamber survey-meter and an accumulated dose-meter called as OSLD, and the actual evaluation environment was modeled and evaluated using the Monte Carlo simulation code as FLUKA. According to the direction of the irradiation, the radiation dose at the facility boundary was difficult to meet the standards set by the regulatory authority, and radiation safety could be secured through additional methods. In addition, it was confirmed that the simulation results using the Iridium-192 source were valid evaluation with the actual measured results.

Calculation of optimal design flood using cost-benefit analysis with uncertainty (불확실성이 고려된 비용-편익분석 기법을 도입한 최적설계홍수량 산정)

  • Kim, Sang Ug;Choi, Kwang Bae
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.6
    • /
    • pp.405-419
    • /
    • 2022
  • Flood frequency analysis commonly used to design the hydraulic structures to minimize flood damage includes uncertainty. Therefore, the most appropriate design flood within a uncertainty should be selected in the final stage of a hydraulic structure, but related studies were rarely carried out. The total expected cost function introduced into the flood frequency analysis is a new approach for determining the optimal design flood. This procedure has been used as UNCODE (UNcertainty COmpliant DEsign), but the application has not yet been introduced in South Korea. This study introduced the mathematical procedure of UNCODE and calculated the optimal design flood using the annual maximum inflow of hydroelectric dams located in the Bukhan River system and results were compared with that of the existing flood frequency. The parameter uncertainty was considered in the total expected cost function using the Gumbel and the GEV distribution, and the Metropolis-Hastings algorithm was used to sample the parameters. In this study, cost function and damage function were assumed to be a first-order linear function. It was found that the medians of the optimal design flood for 4 Hydroelectric dams, 2 probability distributions, and 2 return periods were calculated to be somewhat larger than the design flood by the existing flood frequency analysis. In the future, it is needed to develop the practical approximated procedure to UNCODE.

An Experimental Study on Concrete Bond Behavior According to Grid Spacing of CFRP Grid Reinforcement (격자형 CFRP 보강재의 격자간격에 따른 콘크리트 부착거동에 대한 실험적 연구)

  • Noh, Chi-Hoon;Jang, Nag-Seop;Oh, Hongseob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.73-81
    • /
    • 2022
  • Recently, as the service life of structures increased, the load-carrying capacity of deteriorated reinforced concrete, where corrosion of reinforcing bars occurs due to various causes, is frequently decreased. In order to address this problem, many studies on the bond characteristic of FRP (Fiber Reinforced Polymer) bars with corrosion resistance, light weight and high tensile strength have been conducted, however there are not many studies on the bond characteristic of grid-typed CFRP embedded in concrete. Therefore, in order to evaluate the bond characteristics of grid-typed CFRP and its usability as a substitute for steel rebar, a pull-out test is performed using the longitudinal bond length and transverse grid length of the grid-typed CFRP as variables. Through the pull-out test, the bond load-slip curve of the grid-typed CFRP is derived, and the bond behavior is analyzed. The total bond load equation is proposed as the sum of the bond force of the longitudinal bond length and the shear force of the grid in the transverse direction. Also, expressing the area of the bond load-slip curve as total work, the change in dissipated energy with respect to the slip is analyzed to examine the effect of the tranverse grid on the bond force.

Effect of Total Resistance of Electrochemical Cell on Electrochemical Impedance of Reinforced Concrete Using a Three-Electrode System (3전극방식을 활용한 철근 콘크리트의 교류임피던스 측정 시 전기화학 셀저항의 영향)

  • Khan, Md. Al-Masrur;Kim, Je-Kyoung;Yee, Jurng-Jae;Kee, Seong-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.82-92
    • /
    • 2022
  • This study aims to investigate the effect of total electrochemical cell resistance (TECR) on electrochemical impedance (EI) measurements of reinforced concrete (RC) by electrochemical impedance spectroscopy (EIS) using a three-electrode system. A series of experimental study is performed to measure electrochemical behavior of a steel bar embedded in a concrete cube specimen, with a side length of 200 mm, in various experimental conditions. Main variables include concrete dry conditions, coupling resistance between sensing electrodes and concrete surface, and area of the counter electrode. It is demonstrated that EI values remains stable when the compliant voltage of a measuring device is sufficiently great compared to the potential drop caused by TECR of concrete specimens. It is confirmed that the effect of the coupling resistance of TECR is far more influential than other two factors (concrete dry conditions and area of the counter electrode). The results in this study can be used as a fundamental basis for development of a surface-mount sensor for corrosion monitoring of reinforced concrete structures exposed to wet-and-dry cycles under marine environment.

Development of Sub-indicator for Enhancing the Reliability of National-level Resource Productivity Estimation (국가 단위 자원생산성 측정 신뢰성 제고를 위한 보조지표 개발)

  • Lee, Jong-Hyo;Kang, Hong-Yoon;Hwang, Yong-Woo;Kwon, Soon-Gil
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.258-266
    • /
    • 2022
  • Resource productivity (GDP/DMC) is defined as GDP divided by DMC. However, it has shortcomings when estimating the value-added generated from material processing. In this paper, an energy coefficient is applied to GDP to develop a sub-indicator (referred to as GDPe/DMC). Consequently, South Korea, which is a secondary industry-oriented country, created 1,094.60 USD/ton from input materials and was ranked 4th on the OECD list, which is 10 levels higher than the level estimated by GDP/DMC. However, Luxembourg, which is a tertiary industry-oriented country, is ranked 16th on the OECD list, which is 12 levels lower than the level estimated by GDP/DMC. The resource productivity estimated by the sub-indicator (GDPe/DMC) developed in this study indicates that secondary industry-oriented countries are undervalued in the existing main GDP/DMC calculation. On the other hand, tertiary industry-oriented countries are downgraded due to the industrial features of the GDPe/DMC calculation. As a result of this paper, GDPe/DMC could be considered a more reasonable indicator to directly reflect the material input effect compared to the existing main indicator, GDP/DMC. This means that GDPe/DMC-induced resource productivities could be estimated to be slightly higher than the GDP/DMC-induced resource productivities for secondary industry-oriented countries. It is expected that the sub-indicator, GDPe/DMC, proposed in this study could be useful especially for comparing and analyzing the resource productivities between countries that have different industry structures. This study intended to consider a structurally energy/resource-intensive industry in estimating and analyzing national-level resource productivity. Thus, the sub-indicator, GDPe/DMC, may help minimize the distortion of interpreting national resource productivities in various situations, and be utilized as a more efficient tool when used together with GDP/DMC.

A Study on Shrinkage Crack of Steel Composite Concrete Box Structure (Transfer Girder) (강합성 콘크리트 박스구조물(트랜스퍼 거더)의 건조수축 균열에 대한 연구)

  • Choi, Jung-Youl;Kim, Dae-Ill
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.685-691
    • /
    • 2022
  • This study was based on the steel composite concrete box structure (Transfer girder) which was installed to support the skyscrapers directly above the subway line. In this study, it was analytically proved that the cause of cracks on the steel composite concrete box structure were the shrinkage cracks by comparing the results of crack investigation and numerical analysis. As the results, it was found that the internal temperature difference between concrete and steel members occurred according to the shape of the steel frame embedded in concrete, the location of vertical stiffener, and the closed section area. The narrower spacing of vertical stiffener was occurred the internal temperature concentration of the structure and the temperature difference increased. And the location of higher thermal strain and temperature were similar to the location of actual cracks by the visual inspection. Therefore, the internal temperature concentration parts were formed according to the presence and spacing of the vertical stiffeners and the inspection passage in the central part of the structure. The shrinkage cracks were occurred by the restrained of temperature expansion and contraction of the concrete. As the results of this study, it was important to separate and manage the non-structural cracks caused by shrinkage and the structural cracks in the maintenance of serviced steel-composite concrete structures.

Adsorption Characteristics of Nitrogen in Carbonaceous Micropore Structures with Local Molecular Orientation (국부분자배향의 탄소 미세기공 구조에 대한 질소의 흡착 특성)

  • Seo, Yang Gon
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.249-257
    • /
    • 2022
  • The adsorption equilibria of nitrogen on a region of nanoporous carbonaceous adsorbent with local molecular orientation (LMO) were calculated by grand canonical Monte Carlo simulation at 77.16 K. Regions of LMO of identical size were arranged on a regular lattice with uniform spacing. Microporosity was predominately introduced to the model by removing successive out-of-plane domains from the regions of LMO and tilting pores were generated by tilting the basic structure units. This pore structure is a more realistic model than slit-shaped pores for studying adsorption in nanoporous carbon adsorbents. Their porosities, surface areas, and pore size distributions according to constrained nonlinear optimization were also reported. The adsorption in slit shaped pores was also reported for reference. In the slit shaped pores, a clear hysteresis loop was observed in pores of greater than 5 times the nitrogen molecule size, and in capillary condensation and reverse condensation, evaporation occurred immediately at one pressure. In the LMO pore model, three series of local condensations at the basal slip plane, armchair slip plane and interconnected channel were observed during adsorption at pore sizes greater than about 6 times the nitrogen molecular size. In the hysteresis loop, on the other hand, evaporation occurred at one or two pressures during desorption.

A Study on the Effect of Fire Heat on the Durability of Concrete Structures Repaired and Reinforced with Epoxy Resin (화열(火熱)이 에폭시수지로 보수·보강된 콘크리트 구조체의 내구성에 미치는 영향에 관한 연구)

  • Tai Kwan Cho
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.1
    • /
    • pp.138-145
    • /
    • 2023
  • Purpose: In accordance with the increase in the number of buildings repaired and reinforced following deterioration from when a fire occurs in a previously reinforced building, the impact on the structure after the fire is analyzed to establish standards for repair and reinforcement measures. Method: After curing for 28 days, the process was to measure the compressive strength and induce destruction through a compressor, repair and reinforce it with epoxy, and conduct a re-compressive strength test on some specimens after curing for 3 days to understand the degree of strength restoration. The rest of the repaired and reinforced specimens as well as the unrepaired and unreinforced specimens were then put into an oven and heated according to the temporal and temperate conditions listed below, and then the compressive strength was tested to estimate the impact of fire. Result: After reinforcing the yielded specimen with epoxy, the process was to then put it in an oven and heat it at different temperatures over time. It was found that there was a decrease in the strength of the reinforcement more than that of the actual specimen. Conclusion: Based on this, it was found that a building repaired and reinforced with epoxy resin is actually more dangerous than a general unrepaired building when it is damaged by fire, and thus, that it must be prepared for fire vulnerabilities.

Numerical Study on the Stress-distribution Ratio of Grouting Pile for Reinforced Ground (지반보강용 그라우팅 말뚝의 응력분담비에 대한 수치해석적 연구)

  • Yi, Gyeong-Ju;Lee, Joon-Kyu;Zhang Weiwei;Song, Ki-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.2
    • /
    • pp.19-30
    • /
    • 2023
  • Underground structures, such as compacted sand piles applied as soft ground countermeasures, are analyzed for settlement and stability by the composite ground design method. The basic principle of the composite ground design method is the arching effect. The reinforcing effect of the pile is evaluated as the stress-distribution ratio. When applying grouting piles with elastic properties using the ground reinforcement method, the existing stress-distribution ratio was only considered when the pile was installed. This study shows that the method of applying the stress-distribution ratio applied in previous studies should be changed when the ground reinforcement pile is installed at an arbitrary location in the ground without raising it to the ground surface. When high strength jet routing is applied, the stress-distribution ratio (n) to the in-situ ground generally ranges from 30 to 50. However, if the pile is located far from the surface and the depth goes down to the boundary depth of the stress sphere, the stress-distribution effect rapidly decreases, and the stress-distribution ratio converges to 1.5.

Electromechanical Properties of Smart Repair Materials based on Rapid Setting Cement Including Fine Steel Slag Aggregates (제강 슬래그 잔골재가 혼입된 초속경 시멘트 기반 스마트 보수재료의 전기역학적 특성)

  • Tae-Uk Kim;Min-Kyoung Kim;Dong-Joo Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.62-69
    • /
    • 2023
  • This study investigated the electromechanical properties of cement based smart repair materials (SRMs) according to the different amounts of fine steel slag aggregates (FSSAs). SRMs can self-diagnose the quality of repairing and self-sense the damage of repaired zone. The replacement ratios of FSSAs to sand for SRMs were 0% (FSSA00), 25% (FSSA25), and 50% (FSSA50) by sand weight. The electrical resistivity of SRMs generally decreased as the compressive stress of SRMs increased: the electrical resistivity of FSSA25 at the age of 7 hours decreased from 78.16 to 63.68 kΩ-cm as the compressive stress increased from 0 to 22.37 MPa. As the replacement ratio of FSSAs by weight of sand increased from 0% to 25%, the stress sensitivity coefficient (SSC) of SRM at the age of 7 h increased from 0.471 to 0.828 %/MPa owing to the increased number of partially conductive paths in the SRMs. However, as the replacement ratio of FSSAs further increased up to 50%, the SSC decreased from 0.828 to 0.649 %/MPa because some of the partially conductive paths changed to continued conductive ones. SRMs are expected to self-sense the quality and future damage of repaired zone only by measuring the electrical resistivity of the repaired zone in addition to fast recovery in the mechanical resistance of structures.