Browse > Article
http://dx.doi.org/10.7742/jksr.2022.16.6.741

A Study on the Evaluation of Radiation Safety in Opened-Ceiling-Facilities for Radiography Testing  

Sung-Hoe, Heo (Department of Emergency and Disaster Management, Inje University)
Won-Seok, Park (Department of Emergency and Disaster Management, Inje University)
Seung-Uk, Heo (Safety for medical Device and Radiation)
Byung-In, Min (Department of Nuclear Applied Engineering, Inje University)
Publication Information
Journal of the Korean Society of Radiology / v.16, no.6, 2022 , pp. 741-749 More about this Journal
Abstract
Radiography-Testing that verify the quality of welding structures without destruction are overwhelmingly used in industries, but many safety precautions are required as radiation is used. The workers for Radiography-Testing perform the inspection by moving the Iridium-192 radiation source embedded in the transport container of the gamma-ray irradiator within or outside the facility. The general facility is completely blocked about radiation from the outside with thick concrete, but if it is difficult for worker to handle object of inspection, facilities ceiling can be opened. A general facility may be constructed using a theoretical dose evaluation method because all exterior facilities are blocked, but if the ceiling is open, it is not appropriate to evaluate radiation safety with a simple theoretical calculation method due to the skyshine effect. Therefore, in this study, the radiation safety of the facility was evaluated in the actual field through an ion chamber survey-meter and an accumulated dose-meter called as OSLD, and the actual evaluation environment was modeled and evaluated using the Monte Carlo simulation code as FLUKA. According to the direction of the irradiation, the radiation dose at the facility boundary was difficult to meet the standards set by the regulatory authority, and radiation safety could be secured through additional methods. In addition, it was confirmed that the simulation results using the Iridium-192 source were valid evaluation with the actual measured results.
Keywords
Radiography-Testing; facility; skyshine effect; ion chamber survey-meter; OSLD; Monte Carlo simulation; FLUKA; Iridium-192;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J. G. Lee, PRICIPLES OF RADIATION PROTECTION Vol. 2, Korean Association for Radiation Application, pp. 865-871, 2016.
2 W. S. Bak, S. U. Heo, B. I. Min, "Benchmarking FLUKA Monte Carlo code with international measurement standard for air kerma", Journal of Instrumentation, Vol. 15, No. 12, pp. 12014, 2020. http://dx.doi.org/10.1088/1748-0221/15/12/P12014   DOI
3 W. S. Park, S. U. Heo, J. O. Kim, B. I. Min, "A Study on the Performance Evaluation of Standard Gamma Irradiation System Using Monte Carlo Code", Journal of the Korean Society of Radiology, Vol. 12, No. 2, pp. 179-184, 2018. http://dx.doi.org/http://dx.doi.org/10.7742/jksr.2018.12.2.179   DOI
4 E. G. Yukihara, S. W. S. Mckeever, "Optically stiumlated luminescence (OSL) dosimetry in medicine", Physics In Medicine and Biology, Vol. 53, No. 20, pp. 351-379, 2008. http://dx.doi.org/10.1088/0031-9155/53/20/R01   DOI
5 J. Wulff, K. Zink, I. Kawrakow, "Efficiency improvements for ion chamber calculations in high energy photon beams", MEDICAL PHYSICS, Vol. 35, No. 4, pp. 1328-1336, 2008. http://dx.doi.org/10.1118/1.2874554   DOI
6 C. H. Lee, J. O. Kim, Y. J. Lee, C. H. Jeon, J. E. Lee, "A Study on Activation Characteristics Generated by 9 MeV Electron Linear Accelerator for Container Security Inspection", The Korean Society of Radiology, Vol. 14, No. 5, pp. 563-575, 2020. https://doi.org/10.7742/jksr.2020.14.5.563   DOI
7 J. D. Wallace, "Monte Carlo modelling of large scale NORM sources using MCNP", Journal of Environmental Radioactivity, Vol. 126, pp. 55-60, 2013. http://dx.doi.org/10.1016/j.jenvrad.2013.06.009   DOI
8 Wei Yang Calvin Koh, Hong Qi Tan, Khong Wei Ang, Sung Yong Park, Wen Siang Lew, James Cheow Lei Lee, "Standardizing Monte Carlo simulation parameters for a reproducible dose-averaged linear energy transfer", The British Journal of Radiology, Vol. 93, No. 1112, 2020. http://dx.doi.org/10.1259/bjr.20200122   DOI
9 P, J. Biggs, "Shielding Techniques for Radiation Oncology Facilities, by Patton H. McGinley", Medical Physics, Vol. 25, No. 8, pp. 1556, 1998. http://dx.doi.org/10.1118/1.598329   DOI
10 I. Kawrakow, "Accurate condensed history Monte Carlo simulation of electron transport. II. Application to ion chamber response simulations", MEDICAL PHYSICS, Vol. 27, No. 3, pp. 499-513, 2000. https://doi.org/10.1118/1.598918   DOI
11 J. J. Demarco, R. E. Wallace, K. Boedeker, "An analysis of MCNP cross-sections and tally methods for low-energy photon emitters", National Library of Medicine, Vol. 47, No. 8, pp. 1321-1332, 2002. http://dx.doi.org/10.1088/0031-9155/47/8/307   DOI
12 P. J. Lamperti, M. O'Brien, Calibration of X ray and gamma-ray measuring instrument, National Institute of Standards and Technology(NIST), pp. 250-258, 2001.
13 International Organization for Standardization, ISO 2919:2012 Radiological protection-Sealed Radioactive Sources-General requirements and classificaiton, ISO(Geneva), pp. 19,2012.
14 P. Andreo, D. T. Burns, A. E. Nahum, J. Seuntjens, F. H. Attix, Fundamentals of Ionizing Radiation Dosimetry, John Wiley & Sons, pp. 443-445, 2017.
15 P. N. McDermott, "Photon skyshine from medical linear accelerators", Journal of Applied Clinical Medical Physics, Vol. 21, No. 3, pp. 108-114, 2020. http://dx.doi.org/10.1002/acm2.12833   DOI
16 M. F. Tsiakalos, S. Stathakis, G. A. Plataniotis, C. Kappas, K. Theodorou, "Monte Carlo dosimetric evaluation of high energy vs low energy photon beams in low density tissues", Radiotherapy & Oncology, Vol. 79, No. 1, pp. 131-139, 2006. http://dx.doi.org/10.1016/j.radonc.2006.02.012   DOI