• Title/Summary/Keyword: engineering geology

Search Result 2,236, Processing Time 0.019 seconds

A Study on Soil Washing for Diesel-contaminated Soil by using Decomposition of NaOH/H$_2$O$_2$ (디젤유로 오염된 토양의 NaOH/H$_2$O$_2$ 분해를 이용한 토양세척에 관한 연구)

  • Hwang, Jong-Hyun;Choi, Won-Joon;Kim, Min-Chul;Jung, Jong-Hyeon;Ha, Soo-Ho;Oh, Kwang-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.10
    • /
    • pp.999-1005
    • /
    • 2008
  • The main reaction for soil washing with using sodium hydroxide(NaOH) and hydrogen peroxide(H$_2$O$_2$) was desorption and flotation of petrochemical contaminant by means of oxygen bubble. We found the rate of decomposition by rate constant according to various temperature. For the purpose of optimizing the operation factor, we examined the effect of concentration of NaOH and H$_2$O$_2$, washing time, and soil:water ratio. The rate of decomposition for H$_2$O$_2$ in liquid phase is the first order reaction by its concentration. The rate constant of k$_1$ was 0.9439 $\times$ exp(-1376.82/RT) when concentration of NaOH was lower than 0.1 M, and the rate constant of k$_2$ was 17.3588 $\times$ exp(-2320.06/RT) when it was higher than NaOH of 0.1 M. It found that NaOH was facilitated at the beyond of specific concentration. We confirmed the optimum concentration of NaOH/H$_2$O$_2$ by means of rate constants during soil washing. Also, the optimum conditions during soil washing were washing time of 15 min, soil : water ratio of 1 : 3, and NaOH/H$_2$O$_2$ concentration of 0.25 M/0.1 M.

Evaluation of the Natural Vibration Modes and Structural Strength of WTIV Legs based on Seabed Penetration Depth (해상풍력발전기 설치 선박 레그의 해저면 관입 깊이에 따른 고유 진동 모드와 구조 강도 평가)

  • Myung-Su Yi;Kwang-Cheol Seo;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.127-134
    • /
    • 2024
  • With the growth of offshore wind power generation market, the corresponding installation vessel market is also growing. It is anticipated that approximately 100 installation vessels will be required in the of shore wind power generation market by 2030. With a price range of 300 to 400 billion Korean won per vessel, this represents a high-value market compared to merchant vessels. Particularly, the demand for large installation vessels with a capacity of 11 MW or more is increasing. The rapid growth of the offshore wind power generation market in the Asia-Pacific region, centered around China, has led to several discussions on orders for operational installation vessels in this region. The seabed geology in the Asia-Pacific region is dominated by clay layers with low bearing capacity. Owing to these characteristics, during vessel operations, significant spudcan and leg penetration depths occur as the installation vessel rises and descends above the water surface. In this study, using penetration variables ranging from 3 to 21 m, the unique vibration period, structural safety of the legs, and conductivity safety index were assessed based on penetration depths. As the penetration depth increases, the natural vibration period and the moment length of the leg become shorter, increasing the margin of structural strength. It is safe against overturning moment at all angles of incidence, and the maximum value occurs at 270 degrees. The conditions reviewed through this study can be used as crucial data to determine the operation of the legs according to the penetration depth when developing operating procedures for WTIV in soft soil. In conclusion, accurately determining the safety of the leg structure according to the penetration depth is directly related to the safety of the WTIV.

Hydrological Significance on Interannual Variability of Cations, Anions, and Conductivity in a Large Reservoir Ecosystem (대형 인공호에서 양이온, 음이온 및 전기전도도의 연변화에 대한 수리수문학적 중요성)

  • An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.1 s.93
    • /
    • pp.1-8
    • /
    • 2001
  • During April 1993 to November 1994, cations, anions, and conductivity were analyzed to examine how summer monsoon influences the ionic content of Taechung Reservoir, Korea. Interannual variability of ionic content reflected hydrological characteristics between the two years(high-flood year in 1993 vs. draught year in 1994). Cations, anions and conductivity were lowest during peak inflow in 1993 and highest during a drought in 1994. Floods in 1993 markedly decreased total salinity as a result of reduced Ca$^{2+}$ and HCO$_{3}\;^{-}$ and produced extreme spatial heterogeneity (i.e., longitudinal, vertical, and horizontal variation) in ionic concentrations. The dominant process modifying the longitudinal (the headwaters-to-downlake) and vertical (top-to-bottom) patterns in salinity was an interflow current during the 1993 monsoon. The interflow water plunged near a 27${\sim}$37 km-location (from the dam) of the mid-lake and passed through the 10${\sim}$30m stratum of the reservoir, resulting in an isolation of epilimnetic high conductivity water (>100 ${\mu}$S/cm) from advected river water with low conductivity (65${\sim}$75 ${\mu}$S/cm), During postmonsoon 1993, the factors regulating salinity differed spatially; salinity of downlake markedly declined as a result of dilution through the mixing of lake water with river water, whereas in the headwaters it increased due to enhanced CaCO$_{3}$ (originated from limestone/metamorphic rock) of groundwaters entering the reservoir. This result suggests an importance of the basin geology on ion compositions with hydrological characteristics. In 1994, salinity was markedly greater (p<0.001) relative to 1993 and ionic dilution did not occur during the monsoon due to reduced inflow. Overall data suggest that the primary factor influencing seasonal ionic concentrations and compositions in this system is the dilution process depending on the intensity of monsoon rainfall.

  • PDF

The Characteristics of Runoff from a Forest Watershed with Different Vegetation (식생이 다른 산림유역 유출수의 특성)

  • Lee, Ho-Beom;Park, Chan-Oh;Shin, Dae-Yewn
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.311-316
    • /
    • 2007
  • In this study, we investigated the presence of nitrogen, phosphorus, ions, heavy metals and other contaminations in the water stream and soil of the forest watershed with different geology and vegetations for one year from October 2004 to September 2005. Most of the nitrogen oxide in the soil was in the form of $NO_3^-$, and it appeared that nitrogen contents decreased as the soil depth increased. Nitrogen contents was highest in the basalt area showing 13.3 mg/g in the surface soil and 7.40 mg/g in the subsoil. Phosphorous contents showed no significant variations depending on the soil depth and was higher in the intermediate soil layer(60 cm) than in surface soil (30 cm) in granite and metamorphic rock areas. Nitrogenous compound in the soil water was 8.03 mg/L in the granite area of coniferous forest and 14.79 mg/L in the andesite area of the deciduous forest. Nitrogenous compound in the stream water was 5.53 mg/L in October and 6.99 mg/L in January in the granite area of the coniferous forest and $3.61\sim5.11$ mg/L in the andesite area of the deciduous forest. Phosphates in runoff and stream water were similar in coniferous with in deciduous forests, showing a slight increase(0.090$\sim$0.179 mg/L) in the basalt area. In the coniferous forest, pH showed a significant positive correlation with EC, $Ca^{2+}$ and $Cl^-$ at p < 0.01, and showed a negative correlation with S-Fe and S-Al. Electroconductivity showed a significant correlation of 0.601 with $Ca^{2+}$ and of -0.586 with $NO_3^-$ at p<0.01, and showed a significant correlation of 0.301 with $SO_4^{2-}$ and of -0.295 with S-Fe at p < 0.05. In the deciduous forest, pH showed a positive correlation with $Ca^{2+}$ at p < 0.05, and showed a negative correlation with $K^+$, S-Fe and S-Al at p < 0.01. Electroconductivity showed a significant positive correlation with $Ca^{2+}$ and $Cl^-$ at p < 0.05 and with $NO_3^-$ at p < 0.01.

Environmental Geophysical Survey of Abandoned Landfills for Contamination Evaluation: A Case Study (불량 매립지 오염평가를 위한 지구물리 탐사 사례연구)

  • Lee, Sung-Soon;Lee, Jin-Yong;Yoon, Hee-Sung;Lee, Kang-Kun;Kim, Chang-Gyun;Yu, Young-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.463-471
    • /
    • 2006
  • Electrical resistivity surveys were conducted at areas of abandoned landfills in Cheonan and Wonju. Geology and extent of leachate migration around the landfills were evaluated with collected resistivity data by 2-D and 3-D resistivity inverse modeling. The Cheonan landfill is located above the paddy fields and the resistivity survey lines were crossed to examine possible pollution at the paddy fields by leakage of the landfill leachate. In Wonju, the landfill and the downgradient paddy fields are divided by a concrete barrier wall. At the bottom of the landfill, there is a leachate settlement system, which has not been in operation. To evaluate leachate leakage into the paddy fields, a total of 4 survey lines were used. According to the resistivity survey results, the landfill leachate in Cheonan appeared to be restricted only within the interior of the landfill, not to migrate into the subsurface of the paddy fields. These results are well consistent with electrical conductivity values of groundwaters obtained from a periodic analysis of water qualities. In Wonju, however, it was inferred that the leachate emanating from the landfill migrated beneath the abandoned leachate settlement system and the leachate would reach the downgradient paddy fields. Low resistivity area was observed in the old reservoir area and it appeared to be derived from convergence of groundwater flows from the surrounding valley and the moist wet land. In addition, groundwater flow into the paddy fields occurs beneath the old reservoir embankment at depths of $7{\sim}8m$. This paper reports details of the resistivity surveys for the uncontrolled landfills.

Sedimentary Environmental Change and the Formation Age of the Damyang Wetland, Southwestern Korea (한국 남서부 담양습지의 퇴적환경 변화와 형성시기 연구)

  • Shin, Seungwon;Kim, Jin-Cheol;Yi, Sangheon;Lee, Jin-Young;Choi, Taejin;Kim, Jong-Sun;Roh, Yul;Huh, Min;Cho, Hyeongseong
    • Journal of the Korean earth science society
    • /
    • v.42 no.1
    • /
    • pp.39-54
    • /
    • 2021
  • Damyang Wetland, a riverine wetland, has been designated as the first wetland protection area in South Korea and is a candidate area for the Mudeungsan Area UNESCO Global Geopark. The Damyang Wetland area is the upstream part of the Yeongsan River and is now a relatively wide plain. To reconstruct the sedimentary environment around the Damyang Wetland, core samples were obtained, and sedimentary facies analysis, AMS and OSL age dataings, grain size, and geochemical analyses were carried out. In addition, comprehensive sedimentary environment changes were reconstructed using previous core data obtained from this wetland area. In the Yeongsan River upstream area, where the Damyang Wetland is located, fluvial terrace deposits formed during the late Pleistocene are distributed in an area relatively far from the river. As a gravel layer is widely distributed throughout the plains, Holocene sediments were likely deposited in a braided river environment when the sea level stabilized after the middle Holocene. Then, as the sedimentary environment changed from a braided river to a meandering river, the influx of sand-dominated sediments increased, and a floodplain environment was formed around the river. In addition, based on the pollen data, it is inferred that the climate was warm and humid around 6,000 years ago, with wetland deposits forming afterward. The the trench survey results of the river area around the Damyang Wetland show that a well-rounded gravel layer occurs in the lower part, covered by the sand layer. The Damyang Wetland was likely formed after the construction of Damyang Lake in the 1970s, as muddy sediments were deposited on the sand layer.