• Title/Summary/Keyword: engine thrust

Search Result 459, Processing Time 0.027 seconds

Development trend and prospect of upper stage engines (상단 액체추진기관 개발 동향 및 활용 전망)

  • Kim, Ji-Hoon;Lee, Seon-Mi;Lim, Seok-Hee;Oh, Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.807-808
    • /
    • 2010
  • To insert payload to the orbit over the 200km-altitude using launch vehicle which has 300sec the Isp, multi staging technique for launch is necessary. The range between the sea-level to the transfer orbit about 200~250km is for operation of 1st and 2nd rocket engines and the higher altitude is for propulsion system of the acceleration block and satellite. The upper stage rocket engine should have the high technology for entering the payload into the orbit precisely more than the performance for high thrust level. With this investigation of the upper stage rocket engines which have been used, we want to understand their development trend and prospect which is going to be references for the development of ours.

  • PDF

Predictions of Fatigue Life of Copper Alloy for Regenerative Cooling Channel of Thrust Chamber (연소기 재생냉각 채널용 구리합금의 피로수명예측)

  • Lee, Keumoh;Ryu, Chulsung;Heo, Seongchan;Choi, Hwanseok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.73-82
    • /
    • 2017
  • Low-cycle thermal fatigue problem resulting from multiple use of a liquid rocket engine has to be considered for the development of a reusable launch vehicle. In this study, life prediction equations suggested by previous researchers were compared as applied to various copper alloy cases to predict fatigue lives from tensile test data. The present study has revealed that among the presently considered life prediction methods, universal slopes method provides the best life prediction result for the copper alloys, and the modified Mitchell's method provides the best life prediction result for oxygen free high conductivity (OFHC) copper.

Buzz Characteristic of Supersonic Propulsion System with Spray Injection and Combustion (액적 분사/연소를 고려한 초음속 엔진의 buzz 특성)

  • Kim, Seong-Jin;Yeom, Hyo-Won;Sung, Hong-Gye;Gil, Hyun-Yong;Yoon, Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.411-414
    • /
    • 2010
  • In supersonic propulsion system, the inlet buzz phenomenon in the subcritical operation arises large pressure oscillation, combustion instability, and thrust loss, etc. Inlet Buzz phenomenon and the spray injection/combustion are figured out by the unified unsteady numerical analysis. TAB(Taylor Analogy Breakup) model was applied. Acoustic mode of the entire engine was investigated by detail analysis of pressure fluctuation at each location of the engine.

  • PDF

Design and Implementation of Cold-Flow and Hot-Fire Test Stand of a Cryogenic Propellant Injector Used in LRE (초저온 추진제를 사용하는 액체로켓용 인젝터의 수류/연소시험장치 설계 및 제작)

  • Kim, Do-Hun;Park, Young-Il;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.61-65
    • /
    • 2010
  • To research and develop a liquid rocket engine injector, it needs empirical studies about the hydrodynamic and spray characteristics such as pressure drop, mixing and atomization. In this study, the design and implementation of lab-scale cold-flow/hot fire test stand which can supply cryogenic propellant and be controlled by time-critical LabVIEW cyclogram logic has been done. In order to visualize the spray of a liquid-centered swirl coaxial injector in cryogenic condition, LN2-GN2 cold-flow test has been done, and combustor assembly and thrust bed for LOX-$GCH_4$ hot-fire test have been fabricated.

  • PDF

Investigation on Forced Vibration Behavior of WIG Craft Main Wing Structure Excited by Propulsion System

  • Kong, Chang-Duk;Yoon, Jae-Huy;Park, Hyun-Bum
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.810-812
    • /
    • 2008
  • Previously study on structural design of the main wing of the twenty-seat class WIG(Wing in Ground Effect) craft. In the final design, three spars construction was selected for safety in the critical flight load, and the Carbon-Epoxy material was selected for lightness and structural stability. In this study, the forced vibration analysis was performed on the composite main wing structure of the twenty-seat class WIG craft with two-stroke pusher type reciprocating engine. The vibration analysis based on the finite element method was performed using a commercial FEM code, MSC/NASTRAN. Excitations for the frequency response analysis were assumed as the H-mode(horizontal mode), the V-mode(vertical mode) and the X-mode(twisted mode) which are typical main vibration modes of engine. And excitations for the transient response analysis were assumed as the L-mode(longitudinal mode) with the oscillating propeller thrust which occurs in operation. According to the result of forced vibration analysis, structural design was modified to reduce the vibrations.

  • PDF

Lineup of Microwave Discharge Ion Engines $"\mu"$ series

  • Kuninaka, Hitoshi;Nishiyama, Kazutaka;Hayashi, Hiroshi;Hosoda, Satoshi;Shimizu, Yukio;Koizumi, Hiroyuki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.546-549
    • /
    • 2008
  • Institute of Space and Astronautical Science of Japan Aerospace Exploration Agency(ISAS/JAXA) successfully developed and operated the microwave discharge ion engines onboard Hayabusa asteroid explorer. The ${\mu}10$ ion engines feature the cathode-less plasma generation in both the ion generators and neutralizers with the results of long life and high reliability in space. Based on the space achievements of ${\mu}10$ ion engines with 8mN thrust, 3,000sec Isp and 350W consumption power, several programs are currently under developments: ${\mu}20$, ${\mu}10$HIsp and ${\mu}1$. The first is a 20-cm diameter microwave discharge ion engine, aiming to achieve 30mN/kW in the thrustto-power ratio for the asteroid sample return mission larger than Hayabusa. The second is a high Isp version of ${\mu}10$, and exhausts the plasma beam over 10,000sec Isp using 15kV acceleration voltage for deep space missions to such as Jupiter and Mercury. The third is ${\mu}1$ to be adapted to small satellites for drag-free.

  • PDF

Fundamental design consideration for optimum performance in altitude test cell facility (고공시험설비의 전체 사양을 결정하는 시험부를 중심으로 설비개발시의 주요 고려사항)

  • Choi, Kyoung-Ho;Lee, Jung-Hyung;Owino, George;Lee, Dae-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.411-415
    • /
    • 2008
  • This paper presents on design factor considered in an altitude test cell facility to determine the best sizing to optimize exhaust diffuser pressure recovery and the exact cooling load required to be supplied under transient operation. Engine simulation was performed to analyse the exhaust gas temperature, exit mass flow rate, specific fuel consumption and exhaust velocity helpful in determining secondary mass air flow and the mixed air temperature entering the ejector. based on this, the amount of cooling load was deduced. It was found that improved pressure recovery reduces operational cost(air supply facility, cooling water).

  • PDF

Thermal Barrier Coating Durability Testing Trends for Thrust Chamber of Liquid-propellant Rocket Engine (액체로켓엔진 연소기 열차폐코팅 내구성 시험 기술동향)

  • Lee, Keum-Oh;Ryu, Chul-Sung;Lim, Byoung-Jik;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.603-615
    • /
    • 2012
  • Durability testing method trends of the thermal barrier coating(TBC) for the combustion chamber of the liquid-propellant rocket engine has been investigated. Many types of the durability testing method such as the mechanical tests to measure surface cohesion force, the thermal fatigue tests with laser, furnace, burner or plasma, the small scale combustion tests using injectors, and the thermo-mechanical fatigue tests were observed. The TBC with sufficient durability can be selected for the use of combustion chamber through such specimen-level tests and the durability can be verified by the tests using the real scale combustion chambers.

  • PDF

Study on the procedure to obtain an attainable speed in pack ice

  • Kim, Hyun Soo;Jeong, Seong-Yeob;Woo, Sun-Hong;Han, Donghwa
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.4
    • /
    • pp.491-498
    • /
    • 2018
  • The cost evaluation for voyage route planning in an ice-covered sea is one of the major topics among ship owners. Information of the ice properties, such as ice type, concentration of ice, ice thickness, strength of ice, and speed-power relation under ice conditions are important for determining the optimal route in ice and low operational cost perspective. To determine achievable speed at any designated pack ice condition, a model test of resistance, self-propulsion, and overload test in ice and ice-free water were carried out in a KRISO ice tank and towing tank. The available net thrust for ice and an estimation of the ice resistance under any pack ice condition were also performed by I-RES. The in-house code called 'I-RES', which is an ice resistance estimation tool that applies an empirical formula, was modified for the pack ice module in this study. Careful observations of underwater videos of the ice model test made it possible to understand the physical phenomena of underneath of the hull bottom surface and determine the coverage of buoyancy. The clearing resistance of ice can be calculated by subtracting the buoyance and open water resistance form the pre-sawn ice resistance. The model test results in pack ice were compared with the calculation results to obtain a correlation factor among the pack ice resistance, ice concentration, and ship speed. The resulting correlation factors were applied to the calculation results to determine the pack ice resistance under any pack ice condition. The pack ice resistance under the arbitrary pack ice condition could be estimated because software I-RES could control all the ice properties. The available net thrust in ice, which is the over thrust that overcomes the pack ice resistance, will change the speed of a ship according to the bollard pull test results and thruster characteristics (engine & propulsion combination). The attainable speed at a certain ice concentration of pack ice was determined using the interpolation method. This paper reports a procedure to determine the attainable speed in pack ice and the sample calculation using the Araon vessel was performed to confirm the entire process. A more detailed description of the determination of the attainable speed is described. The attainable speed in 1.0 m, 90% pack ice and 540 kPa strength was 13.3 knots.

Development of Liquid Propellant Rocket Engine for KSR-III (KSR-III 액체추진제 로켓 엔진 개발)

  • Choi Hwan-Seok;Seol Woo-Seok;Lee Soo-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.3
    • /
    • pp.75-86
    • /
    • 2004
  • KSR-III is the first Korean sounding rocket propelled by a liquid propellant propulsion system and it has been developed over 5 years using purely domestic technologies. The propulsion system of KSR-III is a 13-ton class see-level thrust liquid rocket engine(LRE) which utilizes liquid oxygen and kerosene for its propellants and employed pressurized propellant feeding and ablative cooling system. The problem of combustion instabilities which has brought the most difficulty in the development was resolved by implementation of a baffle. Through the development of KSR-III LRE, meaningful achievements have been made in the core technologies of LRE such as design of injectors and combustion chambers and test, evaluation, and control of combustion instabilities. The acquired technologies will be applied to the development of higher performance LREs necessary for future space development programs such as Korean Small Launch Vehicles(KSLV) In this paper, the development of KRE-III LRE system is described including its design, analyses. performance tests and evaluation.