• Title/Summary/Keyword: engine selection

Search Result 176, Processing Time 0.024 seconds

Inedible Vegetable Oil as Substitute Fuel in Compression Ignition Engines-Jatropha Oil

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.14 no.4
    • /
    • pp.153-162
    • /
    • 2009
  • The use of inedible vegetable oils as substitute for diesel fuel in compression ignition engine is of significance because of the great need for edible oil as food, and the reduction of biodiesel production cost etc. Jatropha curcas oil which is a leading candidate for the commercialization of inedible vegetable oils is selected in this study for reviewing the application in CI engine as an alternative fuel. The important properties of jatropha oil (JO) and JO biodiesel are summarized from the various sources in the literature. It is found that five different types of alternative fuel from JO such as neat JO, JO blends with diesel or other fuel, neat JO biodiesel, JO biodiesel blends with diesel or other fuel and degummed JO were extensively examined in the diesel engine. Two different application types of alternative fuels from JO such as preheating and dual fuelling were also tested, It should be pointed out that most of these applications are limited to single cylinder conditions. The systematic study for the selection of effective application method is required. It is clear that the blends of JOME and diesel can replace diesel fuel up to 10% by volume for running the existing common rail direct injection systems without any durability problems. The systematic assessment of spray characteristics of different types of JO and its derivatives for use as diesel engine fuel is also required.

  • PDF

Firing Order Optimization of Medium Speed Diesel Engine Considering Structure and Shaft Vibration (구조 및 축 진동을 고려한 중속 디젤엔진의 착화순서 최적화)

  • Lee, Soo-Mok;Kim, Won-Hyun;Jung, Kun-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.840-843
    • /
    • 2006
  • The determination of firing order is very significant procedure in initial stage of design for medium speed diesel engine. Generally, the selection of firing order has been accomplished in view of minimum excitation forces condition. In this paper all possible firing orders under the given number of cylinder were considered to decide the optimum. Meanwhile torsional vibration characteristics using the phase vector sum method and minimum excitation force concept were applied. From these results, some superior cases were selected. And then, the torsional vibration response analysis and the resonance characteristics of engine structure were investigated for the final decision.

  • PDF

Parametric Study on the Design of Turbocharger Journal Bearing (터보챠져 저어널베어링의 설계에 관한 매개변수 연구)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Turbocharger bearings are under the circumstance of high temperature, moreover rotated at high speed. It is necessary to be designed to overcome the high temperature. So the type of oil inlet port, the inlet oil temperature and the sort of engine oil should be designed, controlled and selected carefully in order to reduce the bearing inside temperature. Therefore, in this study, the effects of the type of inlet oil port, inlet temperature and the sort of engine oil on the performance of a turbocharger bearing are to be investigated. It is found that the type of oil inlet ports, the control of inlet oil temperature and the selection of engine oil type play important roles in determining the temperature and pressure, then the friction and load of a turbocharger journal bearing at high speed operation.

Application Study of Condition Monitoring Technology for Emergency Diesel Generator at Nuclear Power Plant (원자력발전소 비상디젤발전기 상태감시 기술 적용 연구)

  • Choi, K.H.;Park, J.H.;Park, J.E.;Lee, S.G.
    • Journal of Power System Engineering
    • /
    • v.13 no.1
    • /
    • pp.53-58
    • /
    • 2009
  • The emergency diesel generator(EDG) of the nuclear power plant is designed to supply the power to the nuclear reactor on Station Black Out(SBO) condition. The operation reliability of onsite emergency diesel generator should be ensured by a conditioning monitoring system designed to monitor and analysis the condition of diesel generator. For this purpose, we have developing the technologies of condition monitoring for the wolsong unit 3&4 standby diesel generator including diesel engine performance. In this paper, technologies of condition monitoring for the wolsong standby diesel generator are described about three step. First is for selection of operating parameter for monitoring. Second is for technologies of online condition monitoring, Third is for monitoring of engine performance.

  • PDF

Effect of heat ring in the water cooled kerosene engine (수냉식 등유기관에 있어서 가열링의 효과)

  • 이성열;김홍남
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.64-75
    • /
    • 1984
  • In the engine design, it will be able to higher compression ratio and decreasing the cylinder size, if improve the vaporization of fuel and increasing the mass burned fraction in the kerosene engine. Therefore, concave, convex and straight types of hear ring set up neighborhood intake valve into the combustion chamber. The vaporization effect of fuel satisfied by heat transfer from the heat ring, but have need of selection of the location and surface area of the heat ring. Also, combustion duration of the combustion chamber with concave heat ring shorter than combustion chamber with other two types of heat ring, and about 30percent decreases in combustion duration as compared with combustion chamber without heat ring.

  • PDF

An Estimation of the Temperature Distribution and the Soot Density in Diesel Flame with the Two-Color Method using Image Analysis System (화상 2색법에 의한 디젤화염의 온도분포 및 매연농도의 평가)

  • 방중철;최익수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.60-69
    • /
    • 2003
  • The simplified two-color method is proposed which can estimate the temperature distribution and the soot density of the whole flame with the image analysis of the high-speed photographs. The factors influenced on its processing were examined, for example, the selection of the wave length, the kind of films, the preparation of the calibration curve between the radiance of flame and the luminance temperature. The simplified two-color method reported in this paper can be used as a tool for the improvement of the combustion process in direct injection diesel engine.

A Study on the Characteristics and Control of Torsional Vibration for Engine Shafting Systems with Elastic Coupling (탄성커플링을 갖는 기관축계의 비틀림진동 특성 및 제어)

  • 박용남;이진모;김태언;김의간
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.70-75
    • /
    • 1997
  • Power driving shaft systems with reduction gear are frequently equipped with elastic couplings to protect reduction gears and to relieve the torsional vibration problems. In this study, torsional vibration characteristics for the engine shafting system with elastic couplings are investigated and the calculating program is developed. It is confirmed that torsional vibration can be controled by careful selection of a elastic coupling with suitable characteristics and the suitability of a elastic coupling can only be determined as a result of a complete torsional vibration analysis including engine conditions such as misfring for shafting system.

  • PDF

A Design Decision Support Framework for Evaluation of Design Options in Passenger Ship Engine Room (여객선 기관실의 설계 옵션 평가를 위한 결정 지원 프레임 워크)

  • Kim, Soo Woong
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.9-19
    • /
    • 2011
  • Most real world design evaluation and risk-based decision support combine quantitative and qualitative (linguistic) variables. Decision making based on conventional mathematics that combines qualitative and quantitative concepts always exhibit difficulty in modelling actual problems. The successful selection process for choosing a design/procurement proposal is based on a high degree of technical integrity, safety levels and low costs in construction, corrective measures, maintenance, operation, inspection and preventive measures. In this paper, a design decision support framework using a composite structure methodology grounded in approximate reasoning approach and evidential reasoning method is suggested for design evaluation of machinery space of a ship engine room at the initial stages. An illustrative example is used to demonstrate the application of the proposed framework.

Steady-State Performance Simulation and Engine Condition Monitoring for 2-Spool Separate Flow Type Turbofan Engine (2-스풀 분리배기 방식 터보팬 엔진의 성능모사 및 진단에 관한 연구)

  • Gong, Chang Deok;Gang, Myeong Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.60-68
    • /
    • 2003
  • In this study, a steady state performance analysis program was developed for a turbofan engine, and its performance was analyzed at installed conditions. For the purpose of evaluation, the developed program was compared with the performance data provided by the engine manufacturer. It was confirmed that the developed program was reliable because the results by the developed program were well agreed with those by the engine manufacturer within 3.5%. The non-linear GPA(Gas Path Analysis) program for performance diagnostics were developed, and selection of optimal measurement variables was studied. Furthermore, in order to investigate effects of the number and the kind of measurement variables, the non-linear GPA was analyzed with various measurement sets. Finally, the measurement parameters selected in the previous step were applied to the fault detection analysis of the 2-spool separate flow type turbofan engine.

An Approximation Method in Collaborative Optimization for Engine Selection coupled with Propulsion Performance Prediction

  • Jang, Beom-Seon;Yang, Young-Soon;Suh, Jung-Chun
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.2
    • /
    • pp.41-60
    • /
    • 2004
  • Ship design process requires lots of complicated analyses for determining a large number of design variables. Due to its complexity, the process is divided into several tractable designs or analysis problems. The interdependent relationship requires repetitive works. This paper employs collaborative optimization (CO), one of the multidisciplinary design optimization (MDO) techniques, for treating such complex relationship. CO guarantees disciplinary autonomy while maintaining interdisciplinary compatibility due to its bi-level optimization structure. However, the considerably increased computational time and the slow convergence have been reported as its drawbacks. This paper proposes the use of an approximation model in place of the disciplinary optimization in the system-level optimization. Neural network classification is employed as a classifier to determine whether a design point is feasible or not. Kriging is also combined with the classification to make up for the weakness that the classification cannot estimate the degree of infeasibility. For the purpose of enhancing the accuracy of a predicted optimum and reducing the required number of disciplinary optimizations, an approximation management framework is also employed in the system-level optimization.