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Abstract
Ship design process requires lots of complicated analyses for determining a large number
of design variables. Due to its complexity, the process is divided into several tractable
designs or analysis problems. The interdependent relationship requires repetitive works.
This paper employs collaborative optimization (CO), one of the multidisciplinary design
optimization (MDO) techniques, for treating such complex relationship.

CO guarantees disciplinary autonomy while maintaining interdisciplinary compatibility
due to its bi-level optimization structure. However, the considerably increased
computational time and the slow convergence have been reported as its drawbacks. This
paper proposes the use of an approximation model in place of the disciplinary optimization
in the system-level optimization. Neural network classification is employed as a classifier
to determine whether a design point is feasible or not. Kriging is also combined with the
classification to make up for the weakness that the classification cannot estimate the degree
of infeasibility.

For the purpose of enhancing the accuracy of a predicted optimum and reducing the
required number of disciplinary optimizations, an approximation management framework
is also employed in the system-level optimization.

Keywords: collaborative optimization, neural network classification,
approximation management framework, engine selection, propeller design

1 Introduction

The preliminary ship design process goes through many design or estimation steps and
there is frequent information exchange between the steps. The information flow is not
unidirectional. A preceding step passes its output to the following steps and also requires
outputs of the following steps as its input. Due to this coupled characteristic, the ship
design traditionally uses an iterative approach, i.e., design-spiral approach for solving the
large set of coupled relations. The approach provides a balanced solution to a given set of
requirements. However, the balanced solution is also a solution that is not unique and not
optimal (Neu el al 2000).
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Figure 1: The information flow in the engine selection at the ship preliminary design stage

Figure 1 shows an example of the preliminary ship design process and information flow
between the internal steps. The steps involved in ship design can be divided into estimation
work and decision work. The estimation work is to compute or estimate ship performance
based on mathematical theory or accumulated knowledge of ship design. The estimation of
light weight, trim and stability, resistance, building cost, and so on belong to this category
of work. Design specifications required for this estimation work should be given in
advance. The decision work includes the determination of design specification or
characteristic values of a ship such as principal dimension, hull lines, general arrangement,
main engine, propeller and so on. This work is usually supported by the information
obtained from the estimation work, design know-how of a shipyard, classification rules
and so on.

Iterations can be also divided into two types; one formed between a decision step and an
estimation step and the other formed between two decision steps as shown in Figure 1. In
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the first case, the estimation step can be regarded as dependent on the decision step
because the estimation work only provides a certain type of result corresponding to input
given by the decision step. For example, the determination of hull lines is based on the
estimation of hull resistance. Since there is no conflicting interest, they can be easily
integrated by automating the two modules themselves and the information exchange
between the two.

The other iteration created in the interdependent relationship is that one’s decision is
influenced by the other’s decision. For example, the design of hull lines has a strong
influence on the design of propeller and is also affected by the result of propeller design. A
traditional method to solve this coupled problem is to repeat the two decisions by assuming
certain values required by a decision and comparing them with an actually determined
value. The iteration is repeated until the difference between two values is within given
tolerance. In order to minimize the number of iterations and obtain a balanced solution,
initial assumption should be made as accurately as possible based on designer’s experience.
Differently from the first iteration, an additional work to coordinate the conflicting
relationship is necessary. The field of Multidisciplinary Design Optimization (MDO) has
emerged to develop approaches as an alternative to the iterative approach for efficiently
optimizing the design of large coupled systems (Balling and Sobieszcznski-Sobieski 1996).
The collaborative optimization is adapted in this paper for solving this problem.

Collaborative Optimization (CO) basically consists of a bi-level optimization
architecture. It is the job of the discipline teams to satisfy constraints while working to
define a design with which all teams involved can agree upon. The system team 1is in
charge of adjusting the target values so that such agreement is possible while minimizing
(or maximizing) the system level objective. This architecture is designed to promote
disciplinary autonomy while maintaining interdisciplinary compatibility (Braun 1996,
Kroo and Manning 2000). Due to this structure, CO is estimated to be more advantageous
in its applications to practical engineering designs.

However, quantitative information is not readily available as to demonstrate the merit.
Although its several advantageous features have been demonstrated in (Braun et al 1996,
Kroo et al 1994, Kroo 1997), CO is still relatively immature and is not applied extensively
in an actual industrial environment. Some difficulties associated with the inherent features
of the architecture have been reported. Numerical difficulties caused by certain
mathematical details have been cited in (Kroo and Manning 2000, Alexandrov and Lewis
1999, Alexandrov and Lewis 2000). The use of quadratic forms for the system-level
compatibility constraints has shown that changes in system targets near the solution have
little effect on the constraint values. Specifically, the gradient approaches zero, leading to
difficulties for many optimizers, especially the gradient-based optimization methods that
rely on linear approximation of design constraints. This leads to slow rate of convergence
of the system near the presumed solution.

In addition, the price that must be paid for the advantages of decomposition is increased
computational time - some studies have cited extremely large computational time. This
unexpected cost is mostly caused by the architecture that the discipline-level optimization
is nested by the system-level optimization, that is, every disciplinary design should be
performed once in order to evaluate the compatibility constraint of the system-level
optimization. This is one of the reasons to hinder the application of CO to engineering
design, especially when a disciplinary design cannot be automated or when it requires
time-consuming analysis.

As an alternative to relieve the above-mentioned difficulties, the use of approximation
model has been proposed in place of the disciplinary optimization in CO. The disciplinary
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optimization result, optimal discrepancy function value, is modeled as a function of the
interdisciplinary target variables. This discrepancy function value is passed to system level
and is used for checking the compatibility constraint as depicted in Figure 2. System level
optimizer then uses this approximation instead of the disciplinary optimization. The target
of the approximations is a decision-making itself, which is a different point from the
traditional approximation concept to substitute a computationally expensive simulation.
This concept was addressed initially by Sobiebski et al (Sobieski et al 1998). This concept
is particularly appealing in CO for several reasons. Along with the usual approximation
features that aid in parallel execution and load balancing, this approach enables very robust,
but inefficient optimizers such as probabilistic optimization methods acceptable. Therefore,
the convergence problem of CO can be eliminated (Kroo and Manning 2000).
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Figure 2: Use of approximation in CO.

However, there is a difficulty in the use of global approximation. Because of the peculiar
form of the compatibility constraint, it is difficult to directly use the conventional
approximation methods, such as response surface method, kriging, neural network, and so
on. In this paper, neural network classification is employed as a classifier to determine
whether a design point is feasible or not. Also, kriging is combined with the classifier in
order to estimate the degree of infeasibility. Kriging, spatial correlation modeling, has been
asserted to be an approximation technique and is more reliable for building accurate global
approximations of a design space (Cressie 1993, Simpson 1998, Trosset and Torczon 1997).

As an effort to reduce the inaccuracy due to the use of approximations, this paper also
adopts two approximation management frameworks for single objective and multiple
objectives optimization problems. Their purposes are not only to reduce the computational
cost but also to obtain a nearly true optimum or Pareto set by sequentially updating the
approximations. The framework was proven to reduce the required function calls and to
provide more accurate and optimal result than the method just using approximation
without any updating process (Yang et al 2002).

The proposed optimization algorithm of CO procedure will be applied to a practical
problem of engine selection at the preliminary stage of propeller design. It is important for
the best overall performance of a ship to match the propeller characteristics with the engine
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characteristics for long years of ship service. The crucial role of the engine selection
combined with optimum design of propeller geometry particulars is to provide the best
performance of a particular ship.

The propeller design process as in most of engineering problems is associated with many

disciplines such as hydrodynamics, structural integrity, manufacturing, vibration, noise,
cavitation, and maintenance. Some disciplines for the particular design would be
conflicting with other disciplines in order to satisfy a specified set of requirements and
constraints. It is necessary to resolve these conflicts considering all constraints.
Accordingly, the engine selection problem should be taken into account simultaneously in
the propeller design.
The paper is organized as follows: in section 2, the overall approach concerning a
combination of neural network classification and kriging is explained. A brief description
of the approximation management strategy is also provided. An example to illustrate the
use of the approximation management strategy in CO is discussed in section 3. In section 4,
engine selection and propeller design problem is discussed based on both the traditional
approach and the proposed approach. Conclusion is laid in section 5.

2 Managing Approximation in Collaborative Optimization.

2.1 Introduction of Classification Neural Network

In this subsection, the characteristic of the discrepancy function and the difficulty in its
approximation are explained and classification neural network is newly employed.

The compatibility constraint of system level optimization (discrepancy function, ¢, =0)
has a peculiar form compared to conventional inequality constraint (g, <0). It can take a
non-negative value — positive in infeasible region and zero in feasible region, while the
conventional constraint may take a negative value in the feasible region. Therefore, the
trend of its response surface changes steeply at the boundary between feasible and
infeasible region. For example, kriging model or response surface method produce “over-
fitting” in feasible region. This may lead to seriously false approximation of the
discrepancy function in the feasible region. Even if such an over-fitting could be avoided,
it is practically impossible to completely avoid fitting error of the approximation in the
feasible region. Even very small magnitude of error leads to regard a feasible design as an
infeasible region because the feasible region is very sensitive to the magnitude of the
fitting error.

In this paper neural network, multilayer perceptron (Haykin 1994), is employed as a
classifier to decide whether a design point locates at the feasible region or not. The neural
network classification approximates “region” itself while conventional approximation
models “response value”. Because of the different object of modeling, the inaccuracy of
the approximation can be reduced considerably. The misjudgment of the feasibility may be
limited to the neighborhood of the boundary between feasible and infeasible region.
However, due to extra-points located along the boundary, the error of the judgment can be
reduced further. The extra-points are special information to be exploited to reduce the
number of required disciplinary optimization and improve the quality of approximation
(Sobieski et al 1998, Sobieski 1998). A given disciplinary optimization yields values of
{z} for a given {z"}. The key observation is that if a second disciplinary optimization
were performed, where the target values {z'} were set equal to the optimal solution from
the first disciplinary optimization (i.e.{z'} ={z})), the resulting discrepancy function value
would be equal to zero. Since the result is known a priori, there is no need to actually
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perform another disciplinary optimization; rather an extra disciplinary optimization
solution is obtained implicitly, with no additional analysis.

Learning and mapping procedures are as follows. First, a sample point (i.e. a set of
interdisciplinary target variables values) is given to a discipline, then, the discipline
performs disciplinary optimization and yields an optimal discrepancy function value.
According to the value, the sample point is classified into “feasible” or “infeasible” and
assigned {1, 0} or {0, 1} as its output pattern, {O;, O,}, respectively. Neural network to be
trained has the same number of input nodes as the target variables and two output nodes.
After leaning, the neural network makes a decision by comparing the results obtained at
the output nodes, {O,, O,}. It judges a certain design point feasible if its output results in
0,>0,, otherwise, infeasible as shown in Figure 3.

Sample Data

Input : x, x,, X,
Output :
if feasible
{0,,0,}=(1, 0}
if infeasible
{0,, 0, }={0, 1}

Decison

ifO>0,

then feasible
if0,<0,

then infeasible

Figure 3: Multilayer perceptron as a classifier.

Mapping

a design point(x)

Learning Nearal Network
o Classification
‘[ Sample data
Class 1 Class2 |
Fessible Infeasible
> i ] oM}

Y
Neural W . Conventional
Network ‘ | Approximation
‘ Classification | | (kriging or NN)

Conventional
Approximation
(kriging or NN)

Figure 4: Leaning and mapping process of combined neural network
classification - kriging model.

However, in spite of the above-mentioned advantage of the classifier, it cannot evaluate
the degree of infeasibility for an infeasible design point. It just provides a judgment
whether a design point is feasible or not. However, the information is important for any
optimization algorithm, even for direct or global search methods like the simulated
annealing or the genetic algorithm. In this paper, kriging is combined with the classifier in
order to only estimate the infeasibility for a query point, once it is classified into infeasible
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class by the classifier. This process is explained in Figure 4. Sample data itself is used for
building kriging and classified data is used for training the classification. When predicting
the response of a query point, it is first filtered by the classification. If it is decided as
feasible, its output is assigned zero, otherwise its infeasibility level is approximated by
kriging or neural network. Since the response obtained in this way may have a
discontinuity at the boundary of feasible and infeasible region, the genetic algorithm is
thus used in this paper instead of the gradient-based search methods.

2.2 Managing Approximation Models in Optimization

In engineering problems, computationally intensive high-fidelity models or expensive
computer simulations hinder the use of standard optimization techniques because they
should be invoked repeatedly during optimization, despite the tremendous growth of
computer capability. Therefore, these expensive analyses are often replaced by
approximation models that can be evaluated at considerably less effort. However, due to
their limited accuracy, it is practically impossible to exactly find an actual optimum of the
original optimization problem. Significant efforts have been made to overcome this
limitation. The model management framework is one of such endeavours (Booker et al
1999). The approximation models are sequentially updated during the iterative
optimization process. The improvement in accuracy is concentrated on the region of
interest. The models are modified by adding one or several sample points obtained from an
optimization utilizing the predictive capability of approximation models.

{ determine s initial sampling points J

Eval, ={x, %, 3. f(x) : objective function

‘ - g(%) . i-th constraint

r N N
construct approximation models @/(x) : approximation of f (x)
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Figure 5: Adaptive Approximation in Single Objective Optimization

implement high-fidelity analysis at
x, .that is, compute f(x,), g(x,)

In a management strategy proposed in this paper, ‘a predicted optimum’ obtained from an
optimization using approximation is used for the modification of the approximations. This
method will be called Adaptive Approximation in Single Optimization (AASO) henceforth.
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Figure 5 shows the algorithm of AASO. Detail descriptions are laid in (Yang et al 2000,
Yang et al 2002). This strategy is applied to system-level optimization of CO and
disciplinary optimization is replaced by the approximation.

3 Illustrative Examples

Sytem level
minimize
f=00-y,) 10+2y; [
find yg. v, ..
v | |4 o d, | |y
subjectto d, =0,d,=0
\4 y
Discipline 1 Discipline 2
minimize minimize
2L L Yy — ) 1,. .
d -E(yn yIZ) +(y“ y21) d= E(yu _y):)z +(,Yz| _yll)z
ﬁnd xl’yll ﬁnd xl’yll
subject to subject to
& =(0-2x12 _3yz| _plz +25)/10—<»0 g, =_(x2 W _3pz +30)/20$0
Yo = XlZ -02y, -2p, Yo =% +P22

Figure 6: CO formulation of mathematical problem

This problem requires solving a coupled analysis to evaluate constraints and an objective
function. System-level of a collaborative optimization coordinates the coupling by
determining optimal target values of coupling variables linked between two disciplines,
y,and y; . Three kinds of approximation methods are employed in place of two
compatibility constraints (i.e. discrepancy functions): kriging, neural network, a
combination of classification neural network and kriging. Here, the neural network is used
just for the approximation of the response value itself, differently from the neural network
classification. AASQO strategy is also applied to reduce required sample points. Figure 7
shows nine initial sample points of 3x3 grid type and corresponding extra points along
with the contour line of exact 4.

@® Sample Points ||
A Extra Points

015 010 005

20
015 010 005

Figure 7: Contour line of discrepancy function 1
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The 3-D shape of kriging looks like considerably different from the exact model, that is,
over-fitting arises in the central part of feasible region where d, =0, however the case
using kriging succeeded in finding exact solution. It is because extra points near the exact
solution have a strong effect on exactly modeling that region and eventually leads to
optimum.

(c) (d)

Figure 8: 3-D shapes of (a) exact model, (b) kriging,
(¢) neural network and (d) classification+kriging.

On the other hand, although the shape of neural network seems to be very similar with the
exact model in the feasible region, the result of neural network is remarkably different
from the exact optimum. This is because there exists so decisive error in the feasible region
as to have a critical influence on whether feasible or not. The value of 4, of exact model
has the order of about 1072°°, however the neural network has the order of about 10
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which is about an allowable tolerance of the compatibility constraint given by the system
level optimization. The combination of classification and kriging provides not only the
almost same shape but also value exactly equal to zero in the feasible region. This fact
demonstrates the usefulness of classification, especially for the exact approximation of
feasible region.

Table 1: Resuits of mathematical problem

No. of Optimal Point
Approximations ; of System-level Objective
Sample Pts
problem
Exact 51

Optimum(SQP)  (fen call) {17.732,25.296} 37.677

Kriging 13 (17.843,25.451}  37.756

Neural Network 14 (19.706,25.451}  41.481

Classification +

Kriging 15 {17.745, 25.451} 37.559

4 Engine selection and propeller design problem

Propeller design and engine selection cannot be considered apart from each other because
there exists interdependent relation between the two. This section shows the suitability of
collaborative optimization for solving such a relationship by comparing with traditional
approach and standard optimization, and demonstrates the usefulness of AASO strategy
using the combination of classification and kriging.

4.1 Traditional approach

This problem is to simultaneously select an engine type and determine propeller
characteristic variables based on the estimation of ship resistance. This problem can be
decomposed into three disciplines; a propulsion performance prediction discipline, a
propeller design discipline and an engine selection discipline. Three approaches are applied
to this problem; traditional design process, standard optimization and collaborative
optimization.

There exists interdependency between them. Figure 9 shows a conventional design
sequence including the exchange of parameters between them. First, assume propeller
diameter and propeller efficiency using appropriate empirical formulas, and estimate ship
resistance for various ship speed (v) along with thrust deduction coefficient ( ¢)and wake
fraction (w) using a suitable statistical e.g. Holtrop & Mennen method (Holtrop and
Mennen 1982, Holtrop 1984). These estimated values are passed to the propeller design
discipline and this discipline finds optimal propeller characteristic values which can attain
maximum propeller efficiency (7,) subject to two equality constraints — torque constraint
and thrust constraint — and one inequality constraint — cavitation constraint. Here, propeller
rotation speed (rpm) at propeller design point should be preliminarily assumed for its
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optimization. If the obtained propeller efficiency is considerably different from the given
value, it should be returned to the propulsion performance prediction discipline and the
related resistance and self-propulsion factors should be computed again.

Next, NCR power and rpm values are given to the engine selection discipline and a
diesel engine type and the number of cylinders are selected among 160 types of two stroke
MC/MC-C engines of Man B&W company (http://www.manbw.dk/, Engine Selection
Guide) considering some restrictions at the engine selection discipline.

If the given rpm value is not appropriate for selecting satisfactory engine type, other
values are suggested by the engine selection discipline and they are returned to the
propeller design discipline. If the rpm leads to much different propeller efficiency from the
previously computed value, the process should restart with the propulsion performance
prediction discipline again.

Such an iteration process is required for a solution to satisfy all constraints of three
disciplines. Since there is not a higher level discipline to control from a systematic
perspective, the process does not guarantee an optimal solution. For an efficient design
process for a complex system, it would be better to have a system-centered decision-
making team in cooperation with other disciplines. The system-level optimization of CO is
expected to play such a role.

Propulsion Performance
Prediction Discipline
n
Assume R 0 .
1 If given rpm value is not
VVys Vs “Va)s Propeller Design Discipline appropriate,
diameter , n, - suggest different value.
Compute Given e e
Ry, t, w, BHP, NCR NCR, Ry (v), t, w. !
Assume I
rpm at propeller design point :
Find
NCR, t,w diameter, A/A,, Engine Selection Discipline
Vi Ry pitch ratio, ship speed (v) .
RV} vy Ry, || subject to G:\lvce[? rpm

. torque constraint

Vo Ry thrust constraint
cavitation constraint

Maximize 1,

Determine by Intuition
diesel engine type,
no. of cylinders.

Consider

®|  derating ratio,

NCR, rpm propeller operation range,
engine weight,

SFOC,

propeller efficiency.

Figure 9: Traditional design process
4.2 Formulation of engine selection and propeller design problem into CO
framework.

This problem can be integrated into one optimizer as depicted in Figure 10. Fortunately,
there is no coupling between the analyses of three disciplines; therefore, a system analysis
to solve a suite of coupled analyses can be avoided. However, the design variable of engine
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type burdens the integrated optimizer with considerable computational expense. Selecting
the best one among the 160 engine types together with determining other continuous
variables is not easy to be formulated as an optimization problem. Therefore, the engine
type is determined in such a way that an optimization to determine only continuous design
variable is executed for all of the 160 types of engine and the best is selected among the
160 optimums. As the number of the continuous design variable increases, the
computational cost increases rapidly.

Integrated Optimizer

Find
diameter, A/A,, pitch ratio, ship speed (v),
NCR, rpm at NCR, diesel engine type, no. of cylinders.
Subject to
Propeller performance constraints
torque constraint, thrust constraint,
cavitation constraint, guarantee v<opt v<upper limit
Engine performance constraints
derating ratio constraints, predicted BHP constraints,
propeller operation range, engine length constraint.
Maximize n, Mimimize Engine weight, SFOC

diameter, i
diesel engine type, ship speed dl:n;iter,
no of ¢ytinders ; E' "o
Y Propulsion pitch ratio,
Performance ship speed
Prediction Discipline NCR, '
Compute rpm at NCR
BHP | R, t, w,BHP R t, w
A vy
Engine Performance Propeller Performance
Calculation Calculation
Compute Compute
Engine Performances Propeller Performances

Figure 10: Formulation of Standard optimization

Figure 11 shows the formulation of CO problem and the use of approximation in place
of the propeller optimization results. The discrepancy function of the propeller discipline is
modeled as a function of system-level target variables (NCR", rpm” at NCR, and BHP") by
the combined classification + kriging. The optimal propeller efficiency value, 7,, is
modeled by only kriging. Three objective functions are employed at the system-level
optimization; maximize propeller efficiency (7,), minimize engine weight, and minimize
Specific Fuel Oil Consumption (SFOC). They are equally weighted and summed into a
single objective function after normalized. To decompose design variables as in CO is
quite advantageous from a computational point of view compared with the standard
optimization because the selection of engine is separated completely from the
determination of continuous variables.

The detail definition of CO problem is described as follows. The formulation are based
on (Carlton 1994) and (Harvald 1983).
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System Level
Find
NCR*, rpm* at NCR, BHP"
Subject to
NCR', d;<=0, d,<=0 .
rpm"” at NCR, Maxmize 0, NCR',
BHP" 4. | Minimize Engine Weight, rpm” at NCR,
1 SFOC Nos d, BHP
Classification + kriging
| I
Engine Selection Discipline Propeller Design Discipline
Given NCR’, rpm’ at NCR, BHP’
Given Find
.NCR , rpm” at NCR, BHP diameter, A/ A,
F'nfj . pitch ratio, ship speed (v)
diesel engine type, NCR, rpm at NCR
no. of cylinders. Subject to
Subject to . torque constraint
(NCR=NCR’, rpm=rpm thrust constraint
BHP:_BHP ). ) cavitation constraint
derating ratio constraitns, guarantee v<opt v<upper limit
predicted BHP constraints, Minimize
propeller operation range, d,= (NCR-NCR)? + (rpm*-rpm)?
engine length constraint. + (BHP'-BHP)?
M‘S'lee . iolati Propulsion Performance
1 = maximum viotation Prediction Discipline
of constraints
Given v, diameter
Compute R, , t, w, BHP

Figure 11: Formulation of CO problem

System Level
Find
NCR*, rpm*(at NCR), BHP*
subject to
d £0,d,<0
minimize,

W,(1-n,) + W, Engine Weight + W, SFOC, W, =W, =W, =0.333
Engine Selection Discipline
given
NCR*, rpm*(at NCR), BHP*, sea margin (15%), engine margin (10%)
find
engine type, no. of cylinder
(select among 160 combinations of MAN B&W diesel engines and cylinders)

subject to
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low limit(1.1) < derating ratio of BHP ( NMCR/MCR) < upper limit (1.2)

low limit(1.1) < derating ratio of rpm (rpm of L1 /rpm at MCR) < upper limit
(1.2)

0.9x predicted BHP < BHP < 1.1 x predicted BHP

NCR point and 80% of NCR point should be within engine load diagram (see
Figure 11).

MCR(=DMCR)= NCR/(l-engine margin)

rom at MCR=(——) "rpmat NCR
D (NCR) 1%

predicted BHP:—LCR——
(1+ sea mar gin)

NCR = NCR*, rpm=rpm*(at NCR), BHP = BHP*
minimize

maximum violation of constraints

Derating
ratio of
pm
100% - ) L1 .
4 mas’;_fg’C”'” Derating
90% - mcropcr) | o
o 4 Engine
80% L3 y margin
] Ne " Propejler Sea
Z 70% design margin
a € Propeller BHP poift  y
g power L2
o0 60% —+ demand
S curve in "
£ service minimum
SFOC
50% -1 Propelter
power
L4 demand

40%

curve on
trial
| | |

Figure 12: Engine layout and load diagrams and propeller operation range

Propeller Design Discipline

given

T T I 1 1 I
80% 90%
Engine Speed

NCR*, rpm*(at NCR), BHP*
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subject to

Torque constraint, DHzP Ne 2Dk,
7n

DHP x 1, = BHP x17; X1, = NCR /(1 + sea margin)x 1, x 1,

t R, (1+ seamargin) _
1t

Thrust constrain o’ DK,

KK, calculated based on Wageningen B-series regression model

Cavitation constraint, 4./4,>K + 2(1'3 +0.32)T (Kellers
(D*(p, + pgh—p,))

criterion)
MCR
= rpmat MCR = (—=)"*rpm(at NCR
n=rpma (NCR) rpm( )

minimize  d, = (NCR - NCR*) + (rpm — rpm*)* + (BHP — BHP*)’

Propulsion performance prediction Discipline
Given
ship speed (v), diameter, L, B, D, T, C,
Compute
R,.t,w, BHP with Holtrop-Mennen method.

The calculated torque and trust capacity should match with the estimated ship resistance
and DHP level. There are two different approaches to treat this condition. The first is to
determine diameter and rpm directly from the given ship resistance and DHP. The second
is to treat this condition as constraints as this paper.

Usually the thrust and the torque value can be estimated, either by empirical formulas
based on regression analysis for the systematic model tests of standard propeller series
such as B-series and MAU series, or by computational estimation based on numerical
analysis using a tool such as lifting surface codes, surface panel codes, and CFD codes.
This paper employed the first approach.

The propeller power absorption characteristics would be influenced by a number of
factors such as propeller geometrical features, sea conditions, hull conditions and
displacement. Due to those effects the propeller demand power at delivery of a ship would
differ from that in the service life of a ship and throughout the docking cycle. With regard
to such difference in ship performance, the designer generally use a derated engine power
by introducing the so-called ‘sea margin’ and ‘engine margin’ in order to ensure that the
ship has sufficient power available in service. In practice, the intersection between the
engine characteristics curve at the derated condition and the initial propeller demand power
curve becomes the condition for propeller design. The design condition corresponds to
‘Propeller design point’ indicated in Figurel2. The values of the design variables (BHP,
derating ratios of BHP and RPM) are bounded by the lower and upper limits in the form of
their ratios for specifying a simplified range.

Two different approaches for solving CO problem without approximation and two
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approaches for CO problem with approximation are taken. Five trials for each approach are
attempted. Table 2 summarizes the results. The approach of the standard optimization is to
determine all design variables at a time by an overall single optimizer without
decomposition. It is carried out many times and the repeatedly obtained result is contained
in Table 2. The result can be regarded as the practically actual optimum. The approach
proposed in this paper, named AASO in CO, gives design points very close to the actual
optimal point. Four of the five trials succeed while the other one gives a slightly different
optimum value. The approach named “one approximation” which does not include the
process to update approximation models gives a result very different from the optimum.

Table 2: The results of engine selection and propeller design.

. . No. of
Exp| Design Variables Lo I d; . Elapsed
No.| (NCR, rpm, BHP} Objective] (<0.5%)| (<0) Engine Type Ct;clrlls time ( )
U Bl > | os0s |0d06% | "5 | sLoomc-c | 20 | 99
co | sQP |2 {27’3283’0752}'776’ 06823 [ 0370% | 7 | sLoomc-c | 37 | 754
without ’ i
Approxi| Random 131,858, 70.004, 147
APDrON ing | 3 204811 0.6894 | 0.420% | 157 | oLgomec | 9 | 451
point, (31,497, 65.817 -1.58
4 29.055) 06823 |0500% | "% | ssoomc-C | 42 | 2240
5 {31’%4251722}'850’ 06909 [ 0.500% | "9 | oLoome-c | 39 | 2177
| 127.496,63.628, | 6517 | o4t0% | 113 | 1isgoMmc [1,207] 21,830
26,494} e-3
SA |2 | BTG | eedas |0asew| 37 | sssoMe-c |1207] 18251
Random {31,464, 65.814, -6.02
Startin| 3 b 0.6604 | 0390% | 0% | ssoomc-C |1,207| 20,969
point, {23,849, 61.512 -1.80
4 330000 0.6443 |0338% | 39 | gssomc-c | 1,207| 20,005
| O e | oesal [oosen | 7Y | ekosmC | 1.207] 19981
1] B0Rn" | vees |0338% 612 | gsgome-c | 26 | 1,093
2 {26’(2)20f76j}'973’ 0.6506 [0339%| 37 | 1issoMC | 14 | 557
AASO {24,361, 66.349, 124
co 1o 3 o 0.6484 |0359% | 2% | gsgomc-c | 14 | 558
Apptr_oxi 4 {25’3233‘;963}'346’ 0.6468 | 0.348% "2'36 8ssoMC-C | 15 | 627
-mation o =
{23,808, 61.198, 151 )
5 oz, 0.6444 [0315%| "3 | sssomc-c | 39 | 1900
One 29,370, 67.537 3.38
Approxi| - | 129370,67:337, 1 g 6656 | 0.2250% | 2 8LOOMC-C | 27 | 1,021
\PPIOX 27,974} o2
Standard {NCR, rpm, Ag/Ao, diameter, pitch ratio, speed}
o tandard - | =123,644, 61.936,0.518, 14.065, 1.032, 13.724} | 8S80MC-C | - | 3.683
ptimization , BHP = 23,030, Objective = 0.6441
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For an approach to execute CO without using approximation, two optimization
techniques are employed; Sequential Quadratic Programming (SQP) and Simulated
Annealing (SA). In the former case, none of the five trials succeeds in converging to the
actual optimal point, while two trials succeed in the latter case. However, the latter case
requires too many discipline-level optimizations (function calls) and therefore spends too
much computational time. These cases give incorrect results in spite of directly using the
discipline-level optimization results instead of approximation.

0.70

Objective

I"p m#* 60

(a) (®)

24000 26800 28000 30000 32000 34000

NCR*

(©) (d
Figure 13: 3D plots through a series of actual evaluations (a) objective function, (b)
discrepancy function 1, (¢) discrepancy function 2, (d) propeller efficiency contours.

The failure originates from the non-smoothness of the system-level objective function,
especially, the propeller efficiency. This can be observed in Figures 13 and 14 which
present the results obtained through a series of actual discipline-level optimizations with
varying NCR* and rpm* for BHP*. The exact optimal point can be identified in Figure 13
(d). The objective function is characteristic of discontinuity and non-smoothness. The
discontinuity is mostly caused by the objective functions of engine weight and SFOC
which are functions of the discrete variable, engine type, of the engine selection discipline
as shown in Figure 14 (b) and (¢). The non-smoothness is due to the objective function of
propeller efficiency, as shown in Figure 14 (a). Since the propeller efficiency is determined.
by an optimization including two equality constraints at the propeller design discipline
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optimization, some noise in its response cannot be avoided. Such characteristics make it
difficult to use the gradient-based method at the system-level optimization.

Engine Weight

,'pm* “ e
(b)

SFOC

Figure 14: 3D shapes of objective functions through a series of actual
evaluations (a) maximize propeller efficiency (7,), (b) minimize engine
weight (c) minimize Specific Fuel Oil Consumption (SFOC).

In the other hand, the case of AASO in CO can overcome such problems of the objective
function due to the use of both genetic algorithm and approximation. Genetic algorithm
can resolve the problem of discontinuity and non-smoothness and the use of approximation

in place of the propeller design disciplinary optimization can relieve a computational
burden of using genetic algorithm in the system level optimization.

5 Conclusions

This paper presents a method to use approximation methods in collaborative optimization
(CO).to overcome the drawbacks of CO in applying to practical engineering design. The
approximation substitutes for disciplinary optimization itself differently from the general
use in place of a time-consuming analysis. The disciplinary optimal result, called
‘discrepancy function, is approximated as a function of the system level design variables
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passed to the disciplinary optimization. The obtained function is used during the system
level optimization in place of executing the exhaustive disciplinary optimization. This
approach can reduce the number of required disciplinary optimizations in CO remarkably.

However, the peculiar form of the target of the approximation makes it difficult to
employ conventional approximation methods. This paper introduces a combination of
neural network classification and kriging. Since, the neural network -classification
approximates a decision whether a design is feasible or not instead of response value of a
function, it can avoid the difficulty in modeling caused by the particular trend of the profile
of the discrepancy function. In addition, a method to update the approximation models
using the information obtained from the optimization is applied to enhance the accuracy of
the approximation models.

The engine selection and propeller design problems cannot be solved separately because
of their strong interdependent relationship. This paper presents an approach to such
problems based on multidisciplinary design viewpoint instead of traditional design spiral
approach. The problem is formulated as a CO problem and the proposed approximation
methods are applied to the propeller disciplinary optimization. Through this problem, the
validity of the proposed approximation in collaborative optimization has been
demonstrated.
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