• Title/Summary/Keyword: energy-transfer

Search Result 4,146, Processing Time 0.027 seconds

The Effect of Ethanol on the Physical Properties of Neuronal Membranes

  • Bae, Moon-Kyoung;Jeong, Dong-Keun;Park, No-Soo;Lee, Cheol-Ho;Cho, Bong-Hye;Jang, Hye-Ock;Yun, Il
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.356-364
    • /
    • 2005
  • Intramolecular excimer formation of 1,3-di(1-pyrenyl) propane(Py-3-Py) and fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) were used to evaluate the effect of ethanol on the rate and range of lateral and rotational mobilities of bulk bilayer structures of synaptosomal plasma membrane vesicles (SPMVs) from the bovine cerebral cortex. Ethanol increased the excimer to monomer fluorescence intensity ratio (I'/I) of Py-3-Py in the SPMVs. Selective quenching of both DPH and Py-3-Py by trinitrophenyl groups was used to examine the range of transbilayer asymmetric rotational mobility and the rate and range of transbilayer asymmetric lateral mobility of SPMVs. Ethanol increased the rotational and lateral mobility of the outer monolayer more than of the inner one. Thus ethanol has a selective fluidizing effect within the transbilayer domains of the SPMVs. Radiationless energy transfer from the tryptophans of membrane proteins to Py-3-Py was used to examine both the effect of ethanol on annular lipid fluidity and protein distribution in the SPMVs. Ethanol increased annular lipid fluidity and also caused membrane proteins to cluster. These effects on neuronal membranes may be responsible for some, though not all, of the general anesthetic actions of ethanol.

Plasmonic Nanosheet towards Biosensing Applications

  • Tamada, Kaoru
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.105-106
    • /
    • 2013
  • Surface plasmon resonance (SPR) is classified into the propagating surface plasmon (PSP) excited on flat metal surfaces and the local surface plasmon (LSP) excited by metalnanoparticles. It is known that fluorescence signals are enhanced by these two SPR-fields.On the other hand, fluorescence is quenched by the energy transfer to metal (FRET). Bothphenomena are controlled by the distance between dyes and metals, and the degree offluorescence enhancement is determined by the correlation. In this study, we determined thecondition to achieve the maximum fluorescence enhancement by adjusting the distance of ametal nanoparticle 2D sheet and a quantum dots 2D sheet by the use of $SiO_2$ spacer layers. The 2D sheets consisting of myristate-capped Ag nanoparticles (AgMy nanosheets) wereprepared at the air-water interface and transferred onto hydrophobized gold thin films basedon the Langmuir-Schaefer (LS) method [1]. The $SiO_2$ sputtered films with different thickness (0~100 nm) were deposited on the AgMy nanosheet as an insulator. TOPO-cappedCdSe/CdZnS/ZnS quantum dots (QDs, ${\lambda}Ex=638nm$) [2] were also transferred onto the $SiO_2$ films by the LS method. The layered structure is schematically shown in Fig. 1. The result of fluorescence measurement is shown in Fig. 2. Without the $SiO_2$ layer, the fluorescence intensity of the layered QD film was lower than that of the original QDs layer, i.e., the quenching by FRET was predominant. When the $SiO_2$ thickness was increased, the fluorescence intensity of the layered QD film was higher than that of the original QDs layer, i.e., the SPR enhancement was predominant. The fluorescence intensity was maximal at the $SiO_2$ thickness of 20 nm, particularly when the LSPR absorption wavelength (${\lambda}=480nm$) was utilized for the excitation. This plasmonic nanosheet can be integrated intogreen or bio-devices as the creation point ofenhanced LSPR field.

  • PDF

Global Project Finance Trends and Commercial Risk Analysis (글로벌 프로젝트 파이낸스 최근 동향 및 상업위험 분석)

  • Kim, Sang Man
    • THE INTERNATIONAL COMMERCE & LAW REVIEW
    • /
    • v.61
    • /
    • pp.273-302
    • /
    • 2014
  • Project finance ("PF") is a method of raising long-term debt financing based on lending against the cash flow generated by the project alone. Project finance is a nonrecourse or limited recourse financing structure against the sponsors(or the investors). The debt terms in a project finance are not based on the creditor's credit support or on the value of the assets of the project. Lenders rely on the future cash flow to be generated by the project for debt repayment and interest, rather than the value of the project or the credit ratings of the sponsors. The non-recourse or limited recourse financing usually prompt potential project finance lenders to assess carefully all possible risks that might arise in a project to ensure that those risks are mitigated and controlled. In this respect, project finance is a opposite financing method of corporate finance. Project finance has rapidly grown over the last 20 years due to the worldwide process of privatization of public sector and development of natural resources. Global project finance volume reached the record USD 406.5 billion in 2011. In 2012, however, Global project finance volume dropped 6% to USD 382.3 billion. Infrastructure overtook Energy to lead all sectors with USD 113.6 billion. It is generally recognized that there are more and higher risks in project finance compared with corporate finance. Project finance is exposed to commercial risks as well as political risks. The main commercial risks are completion risks, environmental risks, operating risks, input supply risks, revenue risks, etc, and the main political risks are currency convertibility and transfer risks, expropriation risks, war and civil disturbance risks, risks of breach of government concession agreement, etc. Completion risks include permits risks, risks relating to the EPC Contractor, construction cost overrun, delay in completion, inadequate performance on completion, etc.

  • PDF

Fabrication of Uniform TiO2 Blocking Layers for Prevention of Electron Recombination in Dye-Sensitized Solar Cells (염료감응형 태양전지의 전자재결합 방지를 위한 균일한 TiO2 차단층의 제조)

  • Bae, Ju-won;Koo, Bon-Ryul;Lee, Tae-Kuen;Ahn, Hyo-Jin
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • Uniform $TiO_2$ blocking layers (BLs) are fabricated using ultrasonic spray pyrolysis deposition (USPD) method. To improve the photovoltaic performance of dye-sensitized solar cells (DSSCs), the BL thickness is controlled by using USPD times of 0, 20, 60, and 100 min, creating $TiO_2$ BLs of 0, 40, 70, and 100 nm, respectively, in average thickness on fluorine-doped tin oxide (FTO) glass. Compared to the other samples, the DSSC containing the uniform $TiO_2$ BL of 70 nm in thickness shows a superior power conversion efficiency of $7.58{\pm}0.20%$ because of the suppression of electron recombination by the effect of the optimized thickness. The performance improvement is mainly attributed to the increased open-circuit voltage ($0.77{\pm}0.02V$) achieved by the increased Fermi energy levels of the working electrodes and the improved short-circuit current density ($15.67{\pm}0.43mA/cm^2$) by efficient electron transfer pathways. Therefore, optimized $TiO_2$ BLs fabricated by USPD may allow performance improvements in DSSCs.

Economic Impact of City-Gas Industry by the Expansion of Natural Gas Use in Power Generation (발전부문 천연가스 사용 확대에 따른 도시가스 산업의 경제적 파급효과 분석)

  • Yang, Minyoung;Kim, Jinsoo
    • Environmental and Resource Economics Review
    • /
    • v.26 no.4
    • /
    • pp.549-575
    • /
    • 2017
  • Recently, power mix of Korea is planned to be changed from coal-fired and nuclear to gas-combined and renewables by the energy policy of new government. This change will also affect city-gas industry. This paper analyze the economic impact of city-gas industry by scenario that switching coal-fired and nuclear power generation into gas-combined and fuel cell. 2030 input-output table is estimated to take the transfer period into account. As results, the induced impact by city-gas industry to the others was negative when switching into gas-combined while that was positive when switching into fuel cell. This results imply that the gas-fired can be a feasible alternative for short-run but fuel cell is more helpful for our economy in long-run.

Radiative transfer analysis for Amon-Ra instrument

  • Seong, Se-Hyun;Ryu, Dong-Ok;Lee, Jae-Min;Hong, Jin-Suk;Kim, Seong-Hui;Yoon, Jee-Yeon;Park, Won-Hyun;Lee, Han-Shin;Park, Jong-Soo;Yu, Ji-Woong;Kim, Sug-Whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.28.4-29
    • /
    • 2009
  • The 'Amon-Ra' instrument of the proposed 'EARTHSHINE' satellite is a dual (i.e. imaging and energy) channel instrument for monitoring the total solar irradiance (TSI) and the Earth's irradiance at around the L1 halo orbit. Earlier studies for this instrument include, but not limited to, design and construction of breadboard Amon-Ra imaging channel, stray light suppression and system performance computation using Integrated Ray Tracing (IRT) technique. The Amon-Ra instrument is required to produce 0.3% in uncertainty for both Sunlight and Earthlight measurement. In this study, we report accurate estimation of the output electric signal derived from the orbital variation of radiant exitance from the Sun and the Earth arriving at the aperture and detector plane of the Amon-Ra. For this, orbital irradiance are computed analytically first and then confirmed by simulation using Integrated Ray Tracing (IRT) model. Specially, the results show the arriving power at the bolometer detector surface is $1.24{\mu}W$ for the Sunlight and $1.28{\mu}W$ for the Earthlight, producing the output signal pulses of 34.31 mV and 35.47 mV respectively. These results demonstrate successfully that the arriving radiative power is well within the bolometer detector dynamic range and, therefore, the proposed detector can be used for the in-orbit measurement sequence. We discuss the computational details and implications as well as the simulation results.

  • PDF

Elucidation of Serpin's Conformational Switch Mechanism By Rapid Kinetic Study

  • Kang, Un-Beom;Lee, Cheolju;Baek, Je-Hyun;Seunghyun Ryu;Kim, Joon;Yu, Myeong-Hee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.62-62
    • /
    • 2003
  • The native form of serpin (serine protease inhibitor) is kinetically trapped in metastable state. Metastability in these proteins is critical to their biological function. Serpins inhibit target proteases by forming a stable covalent complex in which the cleaved reactive site loop of the serpin is inserted into $\beta$-sheet A of the serpin with concomitant translocation of the protease to the opposite of the initial binding site. Despite recent determination of the crystal structures of a Michaelis protease-serpin complex as well as a stable covalent complex, details on the kinetic mechanism remain unsolved. In this study we constructed several $\alpha$$_1$-antitrypsin variants and examined their kinetic mechanism of loop translocation and formation of protease-serpin complex by stopped-flow experiments of fluorescence resonance energy transfer as well as quenched-flow experiment. We report here the relationship of serpin's conformational switch mechanism with Inhibitory activity. There is little direct correlation between loop insertion rate and inhibitory activity. Rather, disrupting a salt bridge between R196 and E354 accelerates loop translocation even though it impairs the inhibitory activity. Moreover, the serpin's reactive site loop is translocated, at least partially, prior to loop cleavage.

  • PDF

Listener Auditory Perception Enhancement using Virtual Sound Source Design for 3D Auditory System

  • Kang, Cheol Yong;Mariappan, Vinayagam;Cho, Juphil;Lee, Seon Hee
    • International journal of advanced smart convergence
    • /
    • v.5 no.4
    • /
    • pp.15-20
    • /
    • 2016
  • When a virtual sound source for 3D auditory system is reproduced by a linear loudspeaker array, listeners can perceive not only the direction of the source, but also its distance. Control over perceived distance has often been implemented via the adjustment of various acoustic parameters, such as loudness, spectrum change, and the direct-to-reverberant energy ratio; however, there is a neglected yet powerful cue to the distance of a nearby virtual sound source that can be manipulated for sources that are positioned away from the listener's median plane. This paper address the problem of generating binaural signals for moving sources in closed or in open environments. The proposed perceptual enhancement algorithm composed of three main parts is developed: propagation, reverberation and the effect of the head, torso and pinna. For propagation the effect of attenuation due to distance and molecular air-absorption is considered. Related to the interaction of sounds with the environment, especially in closed environments is reverberation. The effects of the head, torso and pinna on signals that arrive at the listener are also objectives of the consideration. The set of HRTF that have been used to simulate the virtual sound source environment for 3D auditory system. Special attention has been given to the modelling and interpolation of HRTFs for the generation of new transfer functions and definition of trajectories, definition of closed environment, etc. also be considered for their inclusion in the program to achieve realistic binaural renderings. The evaluation is implemented in MATLAB.

Study on Performance Evaluation of Subsea Waterjet Trenching Machine Using Water Tank (수조실험을 통한 해저지반 굴삭용 워터젯 장비의 성능평가에 관한 연구)

  • Na, Kyoung-Won;Jo, Hyo-Jae;Baek, Dong-Il;Hwan, Jae-Hyuk;Han, Sung-Hoon;Jang, Min-Suk;Kim, Jae-Heui
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.470-474
    • /
    • 2015
  • The demand for subsea cables and pipelines that transfer marine energy resources onshore has recently increased. Laying these underground after trenching is one engineering method to stabilize exposed subsea cables and pipelines. This experimental study found the optimum conditions for operating two types of waterjet arms mounted on an ROV trencher. A waterjet arm for trenching the seabed was scaled down at a ratio of 1:6, and a comparative analysis was conducted using diverse parameters. The results of this research provide a practical fundamental database to assist in making decisions about the ROV trencher performance in advance.

System Design of SIGMA(KHUSAT-3) CubeSat Mission

  • Lee, Seongwhan;Lee, Junkyu;Kum, Kanghoon;Lee, Hyojeong;Seo, Junwon;Shin, Youra;Jeong, Seonyoung;Shin, Jehyuck;Cheon, Junghoon;Kim, Hanjun;Jin, Ho;Nam, Uk-Won;Kim, Sunghwan;Lee, Regina;Lessard, Marc R.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.54.1-54.1
    • /
    • 2014
  • Kyung Hee University has been developing a CubeSat for the space science mission called SIGMA (Scientific cubesat with Instrument for Global Magnetic field and rAdiation), which includes TEPC (Tissue Equivalent Proportional Counter) and a magnetometer. SIGMA has a 3-unit CubeSat, and the weight is about 3.2 kg. The main payload is TEPC which can measure the Linear Energy Transfer (LET) spectrum and calculate the equivalent dose for the complicated radiation field in the space. The magnetometer is a secondary payload using a miniaturized fluxgate magnetometer. We expect it to have a 1 nT resolution in the dynamic range of ${\pm}65535$ nT. An Attitude Control System (ACS) spins the SIGMA spacecraft 4 rpm with the spin axis perpendicular to the ecliptic plane. Full duplex communication is consists of VHF uplink and S-band and UHF downlink. In this paper, we introduce the system design and the scientific purpose of the SIGMA CubeSat mission.

  • PDF