• Title/Summary/Keyword: energy-efficient Ethernet

Search Result 15, Processing Time 0.031 seconds

Impact Analysis of Traffic Patterns on Energy Efficiency and Delay in Ethernet with Rate Adaptation (적응적 전송률 기법을 이용한 이더넷에서 트래픽 패턴이 에너지 절약률 및 지연 시간에 미치는 영향)

  • Yang, Won-Hyuk;Kang, Dong-Ki;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7B
    • /
    • pp.1034-1042
    • /
    • 2010
  • As many researchers have been interested in Green IT, Energy Efficient Ethernet(EEE) with rate adaptation has recently begun to receive many attention. However, the rate adaptation scheme can have different energy efficiency and delay according to the characteristics of various traffic patterns. Therefore, in this paper, we analyze the impact of different traffic patterns on the energy efficiency and delay in Ethernet with rate adaptation. To do this, firstly we design a rate adaptation simulator which consists of Poisson based traffic generator, Pareto distribution based ON-OFF generator and Ethernet node with rate adaptation by using OPNET Modeler. Using this simulator, we perform the simulation in view of the total number of switching, transmission rate reduction, energy saving ratio and average queueing delay. Simulation results show that IP traffic patterns with high self-similarity affect the number of switching, rate reduction and energy saving ratio. Additionally, the transition overhead is caused due to the high self-similar traffic.

An Enhanced Adaptive Power Control Mechanism for Small Ethernet Switch (소규모 이더넷 스위치에서 개선된 적응적 전력 제어 메커니즘)

  • Kim, Young-Hyeon;Lee, Sung-Keun;Koh, Jin-Gwang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.3
    • /
    • pp.389-395
    • /
    • 2013
  • Ethernet is the most widely deployed access network protocol around the world. IEEE 802.3az WG released the EEE standard based on LPI mode to improve the energy efficiency of Ethernet. This paper proposes improved adaptive power control mechanism that can enhance energy-efficiency based on EEE from small Ethernet switch. The feature of this mechanism is that it predicts the traffic characteristic of next cycle by measuring the amount of traffic flowing in during certain period and adjusts the optimal threshold value to relevant traffic load. Performance evaluation results indicate that the proposed mechanism improves overall performance compared to traditional mechanism, since it significantly reduces energy consumption rate, even though average packet delay increases a little bit.

Adaptive Data Transmission Control for Multilane-Based Ethernet

  • Han, Kyeong-Eun;Kim, Kwangjoon;Kim, SunMe;Lee, Jonghyun
    • ETRI Journal
    • /
    • v.35 no.1
    • /
    • pp.146-149
    • /
    • 2013
  • We propose a reconciliation sublayer (RS)-based lane and traffic control protocol for energy-efficient 40-G/100-G Ethernet. The RS performs active/inactive lane control and data rate adaptation depending on active lane information received from the upper layer. This protocol does not result in a processing delay in the media access control layer, nor is an additional buffer required at the physical layer for dynamic lane control. It ensures minimal delay and no overhead for the exchange of control frames and provides a simple adaptive data rate.

A Study on Energy Savings in a Network Interface Card Based on Optimization of Interrupt Coalescing (인터럽트 병합 최적화를 통한 네트워크 장치 에너지 절감 방법 연구)

  • Lee, Jaeyoul;Han, Jaeil;Kim, Young Man
    • Journal of Information Technology Services
    • /
    • v.14 no.3
    • /
    • pp.183-196
    • /
    • 2015
  • The concept of energy-efficient networking has begun to spread in the past few years, gaining increasing popularity. A common opinion among networking researchers is that the sole introduction of low consumption silicon technologies may not be enough to effectively curb energy requirements. Thus, for disruptively boosting the network energy efficiency, these hardware enhancements must be integrated with ad-hoc mechanisms that explicitly manage energy saving, by exploiting network-specific features. The IEEE 802.3az Energy Efficient Ethernet (EEE) standard is one of such efforts. EEE introduces a low power mode for the most common Ethernet physical layer standards and is expected to provide large energy savings. However, it has been shown that EEE may not achieve good energy efficiency because mode transition overheads can be significant, leading to almost full energy consumption even at low utilization levels. Coalescing techniques such as packet coalescing and interrupt coalescing were proposed to improve energy efficiency of EEE, but their implementations typically adopt a simple policy that employs a few fixed values for coalescing parameters, thus it is difficult to achieve optimal energy efficiency. The paper proposes adaptive interrupt coalescing (AIC) that adopts an optimal policy that could not only improve energy efficiency but support performance. AIC has been implemented at the sender side with the Intel 82579 network interface card (NIC) and e1000e Linux device driver. The experiments were performed at 100 M bps transfer rate and show that energy efficiency of AIC is improved in most cases despite performance consideration and in the best case can be improved up to 37% compared to that of conventional interrupt coalescing techniques.

An Enhanced LPI Control Mechanism in Energy Efficient Ethernet (에너지 효율적인 이더넷에서 개선된 LPI 제어 메커니즘)

  • Lee, Sung-Keun;Jang, Yong-Jae;Yoo, Nam-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.983-989
    • /
    • 2012
  • IEEE 802.3az LPI mechanism allows an Ethernet link to reduce power consumption by entering a low-power sleeping mode and letting some components being powered off when there is no data to be transmitted through the link. However, if small amount of packets are being sent periodically, such a mechanism can not obtain energy efficiency due to a high overhead caused by excessive mode transitions. In this paper, we propose an enhanced LPI mechanism which can perform state transition adaptively based on the traffic characteristics on transport layer and network status. This simulation result shows that proposed mechanism improves energy efficiency than LPI mechanism with respect to energy consumption rate for various traffic loads.

Performance of Energy Efficient Optical Ethernet Systems with a Dynamic Lane Control Scheme (동적 레인 제어방식을 적용한 에너지 절감형 광 이더넷 시스템의 성능분석)

  • Seo, Insoo;Yang, Choong-Reol;Yoon, Chongho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.24-35
    • /
    • 2012
  • In this paper, we propose a dynamic lane control scheme with a traffic predictor module and a rate controller for reconciling with commercial optical PHY modules in energy efficient optical Ethernet systems. The commercial high speed optical Ethernet system capable of 40/100Gbps employs 4 or 10 multiple optical transceivers over WDM or multiple optical links. Each of the transceivers is always turned on even if the link is idle. To save energy, we propose the dynamic lane control scheme. It allows that several links may be entirely turned off in a low traffic load and frames are handled on the remaining active links. To preserve the byte order even if the number of active links may be changed, we propose a rate controller to be sat on the reconciliation sublayer. The main role of the controller is to insert null byte streams into the xGMII of inactive lanes. For the PHY module, the null input streams corresponding to inactive lanes will be disregarded on inactive PMDs. It is very handy to implement the rate controller module with MAC in FPGA without any modification of commercial PHYs. It is very crucial to determine the number of active links based on the fluctuated traffic load, we provide a simple traffic predictor based on both the current transmission buffer size and the past one with different weighting factors for adapting to the traffic load fluctuation. Using the OMNET++ simulation framework, we provide several performance results in terms of the energy consumption.

Arduino Based Smart Home System for the Elderly Living Alone (아두이노 기반의 독거노인을 위한 스마트홈 시스템)

  • Lee, In-Gu;Cho, Myeon-Gyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.5
    • /
    • pp.307-315
    • /
    • 2015
  • Recently, Smart Home System(SHS) is applied in order to provide comfort, energy efficient and better security to the residence. Thus, by introducing the SHS in the house of elderly people, it is possible to provide a convenient and safe life for old people especially living alone. This paper presents the design and implementation of a low cost but yet flexible and secure smart-phone based SHS. The design is based on inter-working between Arduino board with Bluetooth and Arduino board with Ethernet shield, and the home monitor/appliances are connected to the input/output ports of this board via sensors/relays. In addition, when the old man is put on an emergency, the proposed system will automatically notify it the family. Therefore, we have implemented an inexpensive and efficient SHS for the elderly living alone by inter-working smart phones, internet server and Arduino micro-controller.

Networked Home-Device의 전력관리를 위한 대기모드지원 게이트에이 시스템 설계 및 구현기술

  • Yun, Jung-Mee;Lee, Sang-Hak
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.368-371
    • /
    • 2008
  • 홈 네트워크내에서 Always-on 기기 특성으로 인하여 불필요한 에너지를 소비하는 경우가 전체 소모전력량의 60%이상을 차지한다. 그러므로 이러한 에너지 소비를 줄일 수 있는 방안에 대한 연구의 필요성이 점차 증대되고 있으며, 본고에서 연구한 Ethement 기반의 트래픽량에 의한 대기모드 전환 알고리즘은 에너지 절감에 매우 유용한 연구기술이라 할 수 있다. 이에, 본고에서는 idle time때의 네트워크 에너지 소비를 절감하기 위한 대기전력 지원형 Green Ethernet Gateway시스템설계 및 구현방안과 시스템 대기모드상태를 최대한 연장하여 energy efficient효과를 향상시키기 위한 Proxying 기반 control policy를 제안한다. 일반적으로 홈네트워크의 네트워크 연결은 ethemet을 중심으로 이루어지며, 대부분 게이트웨이를 기반으로 그 연결이 구성된다. 그러나 홈네트워크의 일반적인 동작시간이 8시간 내외인데도 불구하고, 네트워크 연결을 위해서 full Power 상태를 유지해야하는 기존의 energy unaware기반의 게이트웨이 구조로는 에너지측면에서 막대한 에너지 낭비를 초래한다. 이에 본고에서는 게이트웨이에서의 에너지 절감을 위한 트래픽량 기반의 대기모드 지원형 시스템을 구현하고 실제 홈네트워크 적용을 통한 에너지 절약효과를 실험한다. 또한 활성모드, 대기모드간 전환을 효과적으로 하기 위한 layer 2,3 Packe기반의 지능형 Proxying 알고리즘을 이용한 control policy를 제안한다.

  • PDF

Hierarchical Power Management Architecture and Optimal Local Control Policy for Energy Efficient Networks

  • Wei, Yifei;Wang, Xiaojun;Fialho, Leonardo;Bruschi, Roberto;Ormond, Olga;Collier, Martin
    • Journal of Communications and Networks
    • /
    • v.18 no.4
    • /
    • pp.540-550
    • /
    • 2016
  • Since energy efficiency has become a significant concern for network infrastructure, next-generation network devices are expected to have embedded advanced power management capabilities. However, how to effectively exploit the green capabilities is still a big challenge, especially given the high heterogeneity of devices and their internal architectures. In this paper, we introduce a hierarchical power management architecture (HPMA) which represents physical components whose power can be monitored and controlled at various levels of a device as entities. We use energy aware state (EAS) as the power management setting mode of each device entity. The power policy controller is capable of getting information on how many EASes of the entity are manageable inside a device, and setting a certain EAS configuration for the entity. We propose the optimal local control policy which aims to minimize the router power consumption while meeting the performance constraints. A first-order Markov chain is used to model the statistical features of the network traffic load. The dynamic EAS configuration problem is formulated as a Markov decision process and solved using a dynamic programming algorithm. In addition, we demonstrate a reference implementation of the HPMA and EAS concept in a NetFPGA frequency scaled router which has the ability of toggling among five operating frequency options and/or turning off unused Ethernet ports.

PC Cluster based Parallel Adaptive Evolutionary Algorithm for Service Restoration of Distribution Systems

  • Mun, Kyeong-Jun;Lee, Hwa-Seok;Park, June-Ho;Kim, Hyung-Su;Hwang, Gi-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.435-447
    • /
    • 2006
  • This paper presents an application of the parallel Adaptive Evolutionary Algorithm (AEA) to search an optimal solution of the service restoration in electric power distribution systems, which is a discrete optimization problem. The main objective of service restoration is, when a fault or overload occurs, to restore as much load as possible by transferring the de-energized load in the out of service area via network reconfiguration to the appropriate adjacent feeders at minimum operational cost without violating operating constraints. This problem has many constraints and it is very difficult to find the optimal solution because of its numerous local minima. In this investigation, a parallel AEA was developed for the service restoration of the distribution systems. In parallel AEA, a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner are used in order to combine the merits of two different evolutionary algorithms: the global search capability of the GA and the local search capability of the ES. In the reproduction procedure, proportions of the population by GA and ES are adaptively modulated according to the fitness. After AEA operations, the best solutions of AEA processors are transferred to the neighboring processors. For parallel computing, a PC cluster system consisting of 8 PCs was developed. Each PC employs the 2 GHz Pentium IV CPU and is connected with others through switch based fast Ethernet. To show the validity of the proposed method, the developed algorithm has been tested with a practical distribution system in Korea. From the simulation results, the proposed method found the optimal service restoration strategy. The obtained results were the same as that of the explicit exhaustive search method. Also, it is found that the proposed algorithm is efficient and robust for service restoration of distribution systems in terms of solution quality, speedup, efficiency, and computation time.