• Title/Summary/Keyword: energy-efficient

Search Result 4,883, Processing Time 0.03 seconds

Energy Efficient Locomotion Control of Compliant Legged Robot (유연 다리 구조를 가진 로봇의 에너지 효율적 주행 제어)

  • Kwon, Oh-Seok;Choi, Rock-Hyun;Lee, Dong-Ha
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.2
    • /
    • pp.76-82
    • /
    • 2012
  • In this study, we aim to develop energy efficient walking and running robot with compliant leg. So, we propose the energy efficient locomotion control method. And, we experiment the proposed control method applying to the experimental robot with compliant leg. From the experiment, we look at whether the proposed control method can the robot walk and run energy efficiently.

An Energy Efficient Chain-based Routing Protocol for Wireless Sensor Networks

  • Sheikhpour, Razieh;Jabbehdari, Sam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.6
    • /
    • pp.1357-1378
    • /
    • 2013
  • Energy constraint of wireless sensor networks makes energy saving and prolonging the network lifetime become the most important goals of routing protocols. In this paper, we propose an Energy Efficient Chain-based Routing Protocol (EECRP) for wireless sensor networks to minimize energy consumption and transmission delay. EECRP organizes sensor nodes into a set of horizontal chains and a vertical chain. Chain heads are elected based on the residual energy of nodes and distance from the header of upper level. In each horizontal chain, sensor nodes transmit their data to their own chain head based on chain routing mechanism. EECRP also adopts a chain-based data transmission mechanism for sending data packets from the chain heads to the base station. The simulation results show that EECRP outperforms LEACH, PEGASIS and ECCP in terms of network lifetime, energy consumption, number of data messages received at the base station, transmission delay and especially energy${\times}$delay metric.

Design and Implementation of A Location-based Energy-Efficient Routing Protocol using Quantity of Energy Consumed (에너지 사용량을 이용한 위치 기반 에너지 효율적인 라우팅 프로토콜 설계 및 구현)

  • Jang, You-Jin;Kim, Yong-Ki;Chang, Jae-Woo
    • Journal of Korea Spatial Information System Society
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • Recently, wireless sensor networks(WSNs) technology has been considered as one of the most critical issues in the ubiquitous computing age. The sensor nodes have limited battery power, so they should consume low energy through their operation for the long-lasting lifetime. Therefore, it is essential to use energy efficient routing protocol. For this, we propose a location-based energy-efficient routing protocol which constructs the energy efficient route by considering the quantity of Energy consumed. In addition, we propose a route reconstruction algorithm to handle the disconnection of message transmission. Finally, we show from performance analysis using TOSSIM that our protocol outperforms the existing location based routing protocols in terms of energy efficiency.

SiOC Anode Material Derived from Poly(phenyl carbosilane) for Lithium Ion Batteries

  • Lee, Yoon Joo;Ryu, Ji Yeon;Roh, Kwang Chul;Kim, Soo Ryong;Kwon, Woo Teck;Shin, Dong-Geun;Kim, Younghee
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.480-484
    • /
    • 2013
  • Since SiOC was introduced as an anode material for lithium ion batteries, it has been studied with different chemical compositions and microstructures using various silicon based inorganic polymers. Poly(phenyl carbosilane) is a SiOC precursor with a high carbon supply in the form of the phenyl unit, and it has been investigated for film applications. Unlike any other siloxane-based polymers, oxygen atoms must be utilized in an oxidation process, and the amount of oxygen is controllable. In this study, SiOC anodes were prepared using poly(phenyl carbosilane) with different heat treatment conditions, and their electrochemical properties as an anode material for lithium ion batteries were studied. In detail, cyclic voltammetry and charge-discharge cycling behavior were evaluated using a half-cell. A SiOC anode which was prepared under a heat treatment condition at $1200^{\circ}C$ after an oxidation step showed stable cyclic performance with a reversible capacity of 360 mAh/g.

A Study on the Energy Consumption and Long-Term Costs according to Horizontal Locations of dwelling units in an Apartment Building (공동주택 주동 내 단위세대의 수평 위치에 따른 에너지 사용량과 장기비용에 관한 연구)

  • Ahn, Jong-Hoon;Park, Sung-Yong;Shin, Hyun-Ik
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.2
    • /
    • pp.33-41
    • /
    • 2019
  • The purpose of this study is to provide a basic data for energy efficient apartment designs by analyzing electricity and gas usage according to horizontal locations of dwelling units in apartment buildings. The data for this research are collected from J-apartment complex, located at 'Wolbae' district in Daegu City. The data are sorted into several groups according to inner and outer locations, East-West locations, and the size of units. By the performance efficiency analysis, the study derives the result as follows: 1) generally inner units are more efficient than outer units. 2) West units are more efficient than East units. 3) The group that is most efficient in overall energy consumption is West-inner units (Group-D) and the least efficient group is East-outer units (Group-A1). 4) However, as units are getting bigger, inner units consumes more energy than outer units because of the gas usage patterns. The study also established cost analysis that shows the cost differences of usages for 30, 40, 50 years between each group. The result says Inner-outer location with East-West location affects a significant amount of the management costs. In terms of economic and social life of an apartment building, energy design standards need to be tuned and make the least efficient units perform as efficient as the most efficient units to optimize the social life of an apartment building.

Preparation of Si(Al)ON Precursor Using Organoaluminum Imine and Poly (Phenyl Carbosilane), and the Compositional Change of the Film with Different Heat Treatment Condition

  • Lee, Yoonjoo;Shin, Dong-Geun;Kwon, Woo Teck;Kim, Soo Ryong;Kim, Younghee
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.243-247
    • /
    • 2015
  • Si(Al)ON precursor was synthesized by formation of new Si-N bond using organoaluminum imine and liquid type poly(phenyl carbosilane). It was decomposed between $200-600^{\circ}C$, and the ceramic yield was 51% after pyrolysis. 150 - 200 nm in thickness of coating film was obtained by spin coating method. The precursor was easily oxidized during process because it was unstable in air. However the oxygen content was limited to 0.5 - 0.7 to silicon in heat treatment step. Even though the content of nitrogen was decreased by pyrolysis, Al-N and Si-N bonds were formed in ammonia atmosphere, and Si(Al)ON film was formed with 0.2 in content to silicon.

Energy Efficient Selection Scheme for Multiple Wireless Network Interfaces of Mobile Devices (다중 무선 네트워크 휴대 장치를 위한 에너지 효율적인 네트워크 인터페이스 선택 기법)

  • Kim, Bong-Jae;Min, Hong;Gu, Bon-Chul;Jung, Jin-Man;Cho, Yoo-Kun;Heo, Jun-Young;Hong, Ji-Man
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.12
    • /
    • pp.1194-1198
    • /
    • 2010
  • Recent mobile devices have multiple wireless network interfaces. Therefore, we can use a more 'energy efficient network interface for reducing energy consumption' according to the network environment without depending on a specific network interface. In this paper, we propose an energy efficient wireless network interface selection scheme for mobile devices with multiple wireless network interfaces. The proposed scheme selects a more energy efficient network interface for data communication by using polling. Also, we show that our scheme is more efficient in terms of energy consumption.

The Analysis of Determining Factors Influencing for Energy-saving Attitudes and Behaviors Related and Electric Energy Consumption (에너지절약태도 및 관련 행동과 전기에너지소비의 영향요인 분석)

  • Huh, Kyung-Ok
    • Journal of Family Resource Management and Policy Review
    • /
    • v.14 no.3
    • /
    • pp.53-68
    • /
    • 2010
  • This study tried to develop the theoretical backgrounds, explaining consumers energy consumption behavior and analyzed its effects. In other words, this study investigated the factors influencing the amount of electronic energy consumption. In this study, we used 678 questionnaires which were selected a quota sampling by living area who were above 20 years old and married. Summary of results of this study follows. First, attitude for energy saving was positively related with female, high school graduated large size of family members, elderly, and middle-class consumers. In addition, consumers' search for energy saving were appeared passively in young consumers under 30 years old, and the family with the highest household income. Consumers' purchasing energy-efficient products was presented in large size of family members, and young consumers. Second, consumers' environmental oriented behavior, action-directed behavior, healthseeking behavior were significantly related with energy saving behavior, and active information search for energy saving, but not with purchasing energy-efficient products and consuming behavior of electrical energy. Third, the quantity of electric energy consumption was affected by the size of family members, the living size of house related with high energy demand, the attitude for energy saving, and searching information for energy-saving.

  • PDF

Efficient Driving Pattern of the Railway Vehicles for Driving Energy Saving (주행에너지 절약을 위한 철도차량의 효율적 열차주행 패턴)

  • Kim, Jung-Hyun;Shin, Han-Chul;Choi, Yung-Ho;Han, Soo-Hee;Kim, Lark-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1368-1373
    • /
    • 2012
  • In this paper, we propose an efficient driving pattern which consumes less energy for driving from one station to next. Three driving patterns for four sections in the No. 5 subway line of Seoul Metropolitan Rapid Transit Corp. are compared for the energy consumption, the maximum speed, and the powering time. It turns out that the powering time and the maximum speed should be decreased as much as possible in order to achieve the efficient driving.

Global Optimization for Energy Efficient Resource Management by Game Based Distributed Learning in Internet of Things

  • Ju, ChunHua;Shao, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.3771-3788
    • /
    • 2015
  • This paper studies the distributed energy efficient resource management in the Internet of Things (IoT). Wireless communication networks support the IoT without limitation of distance and location, which significantly impels its development. We study the communication channel and energy management in the wireless communication network supported IoT to improve the ability of connection, communication, share and collaboration, by using the game theory and distributed learning algorithm. First, we formulate an energy efficient neighbor collaborative game model and prove that the proposed game is an exact potential game. Second, we design a distributed energy efficient channel selection learning algorithm to obtain the global optimum in a distributed manner. We prove that the proposed algorithm will asymptotically converge to the global optimum with geometric speed. Finally, we make the simulations to verify the theoretic analysis and the performance of proposed algorithm.