• Title/Summary/Keyword: energy-dispersive x-ray spectroscopy (eds)

Search Result 301, Processing Time 0.029 seconds

Microstructural Analysis of Slags using Raman Micro Spectroscope

  • Park, Su Kyoung;Kwon, In Cheol;Lee, Su Jeong;Huh, Il Kwon;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.35 no.2
    • /
    • pp.145-152
    • /
    • 2019
  • The metal-manufacturing method and smelting temperature of ancient metal-production processes have been studied by analyzing the principal elements and microstructures of slag. However, the microstructure of slag varies according to the solidification cooling rate and types and relative amounts of various oxides contained within the smelting materials. Hence, there is a need for accurate analysis methods that allow slag to be distinguished by more than its composition or microstructure. In this study, the microstructures of slag discharged as a result of smelting iron sands collected from Pohang and Gyeongju, as well as the slag excavated from the Ungyo site in Wanju, were analyzed by using metalloscopy, scanning election microscopy-energy dispersine X-ray spectroscopy(SEM-EDS) and wavelength dispersive X-ray fluorenscence(WD-XRF). Furthermore, the microcrystals were accurately characterized by performing Raman micro-spectroscopy, which is a technique that can be used to identify the microcrystals of slags. SEM-EDS analysis of Pohang slag indicated that its white polygonal crystals could be Magnetite; however, Raman micro-spectroscopy revealed that these crystals were actually $ulv{\ddot{o}}spinel$. Raman micro-spectroscopy and SEM-EDS were also used to verify that the coarse white dendritic structures observed in the Gyeongju-slag were $W{\ddot{u}}stites$. Additionally, the Wanju slag was observed to have a glassy matrix, which was confirmed by Raman micro-spectroscopy to be Augite. Thus, we have demonstrated that Raman micro-spectroscopy can accurately identify slag microcrystals, which are otherwise difficult to distinguish as solely based on their chemical composition and crystal morphology. Therefore, we conclude that it has excellent potential as a slag analysis technique.

Microstructural characterization of accident tolerant fuel cladding with Cr-Al alloy coating layer after oxidation at 1200 ℃ in a steam environment

  • Park, Dong Jun;Jung, Yang Il;Park, Jung Hwan;Lee, Young Ho;Choi, Byoung Kwon;Kim, Hyun Gil
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2299-2305
    • /
    • 2020
  • Zr alloy specimens were coated with Cr-Al alloy to enhance their resistance to oxidation. The coated samples were oxidized at 1200 ℃ in a steam environment for 300 s and showed extremely low oxidation when compared to uncoated Zr alloy specimens. The microstructure and elemental distribution of the oxides formed on the surface of Cr-Al alloys have been investigated by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). A very thin protective layer of Cr2O3 formed on the outer surface of the Cr-Al alloy, and a thin Al2O3 layer was also observed in the Cr-Al alloy matrix, near the surface. Our results suggest that these two oxide layers near the surface confers excellent oxidation resistance to the Cr-Al alloy. Even after exposure to a high temperature of 1200 ℃, inter-diffusion between the Cr-Al alloy and the Zr alloy occurred in very few regions near the interface. Analysis of the inter-diffusion layer by high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS) measurement confirmed its identity as Cr2Zr.

A Study on ElectricalㆍOptical Properties of Organic Light Emitting Diode by Oxygen Plasma Surface Treatment of Indium-Tin-Oxide Substrates (ITO 기판의 산소 플라즈마 표면 처리에 의한 OLED의 전기적ㆍ광학적 특성에 관한 연구)

  • Yang Ki-Sung;Kim Byoung-Sang;Kim Doo-Seok;Shin Hoon-Kyu;Kwon Young-Soo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.1
    • /
    • pp.8-12
    • /
    • 2005
  • Indium tin oxide(ITO) surface treated by Oxygen plasma has been in situ analyzed using XPS(X-ray Photoelectron Spectroscopy) and EDS(Energy Dispersive Spectroscopy), to investigate the relations between the properties of the ITO surface and the properties of OLED(Organic Light Emitting Diode). We measured electrical resistivity using Four-Point-Probe and calculated sheet resistance, and ITO surface roughness was measured by AFM(Atomic Force Microscope). We fabricated OLED using substrate that was treated optimum ITO surface. The plasma treatment of the ITO surface lowered the operating voltage of the OLED. We have obtained an improvement of luminance and decrease of turn-on voltage.

Physicochemical and Electrochemical Characteristics of Carbon Nanomaterials and Carbon Nanomaterial-Silicon Composites

  • Kim, Soo-Jin;Hyun, Yura;Lee, Chang-Seop
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.5
    • /
    • pp.299-309
    • /
    • 2016
  • In this study, the physicochemical and electrochemical properties of carbon nanomaterials and synthesized nano-carbon/Si composites were studied. The nano-carbon/Si composites were ball-milled to a nano size and coated with pyrolytic carbon using Chemical Vapor Deposition (CVD). They were then finely mixed with respective nano-carbon materials. The physicochemical properties of samples were analyzed using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Raman spectroscopy, X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and surface area analyzer. The electrochemical characteristics were investigated using the galvanostatic charge-discharge and cyclic voltammetry (CV) measurements. Three-electrode cells were fabricated using the carbon nanomaterials and nano-carbon/Si composites as anode materials and LiPF6 and LiClO4 as electrolytes of Li secondary batteries. Reversibility using LiClO4 as an electrolyte was superior to that of LiPF6 as the electrolyte. The initial discharge capacities of nano-carbon/Si composites were increased compared to the initial discharge capacities of nano-carbon materials.

Geotechnical Characteristics of the Ulleung Basin Sediments, East Sea (2) - Microstructure, Mineralogy, and Strength Parameters (동해 울릉분지 심해토의 지반공학적 특성(2) - 미세구조특성, 광물특성 및 강도특성에 관한 연구)

  • Kim, Youngmoon;Lee, Jongsub;Lee, Jooyong;Lee, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.5
    • /
    • pp.49-56
    • /
    • 2013
  • The necessity of exploration in deep sea increases to develop the natural resources. The deep marine sediments, which were recovered from the hydrate occurrence regions during the Ulleung Basin Gas Hydrate Expedition 2 (UBGH2), East Sea, Korea in 2010, are explored to obtain the geotechnical characteristics and strength parameters. The index properties of the specimens including the atterberg limits, specific surface, and particle size distribution are measured and compared with the previous studies. X-ray diffraction, scanning electron microscope, and X-ray energy dispersive spectroscopy are conducted to analyze the clay mineralogy, chemical composition, and microstructure of the sediments. Strength parameters and shear wave velocities are measured with the axial strain by using an instrumented triaxial device. The strength parameters estimated by empirical equations are compared with the experimental results.

Fabrication of Cu(Inx,Ga1-x)Se2 absorber layers using non-toxic rapid thermal selenziation (비 독성 셀레늄 팰릿을 이용하여 급속 열처리한 CIGS 흡수층 형성)

  • Cheon, Seong-Hyeon;Gwon, Yong-Hyeon;Jo, Hyeong-Gyun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.160-160
    • /
    • 2013
  • 본 실험에서는 CIGS 흡수층을 스퍼터링 방식과 급속열처리 장비를 이용한 2-step 방식을 이용하여 형성시켰다. 전구체는 DC 스퍼터링 방법으로 $Cu_{0.75}Ga_{0.25}/In$의 다층 전구체를 구성 후, 독성이 없는 셀레늄 팰릿을 graphite 상자에 넣어 급속열처리 장비로 온도를 $475{\sim}680^{\circ}C$로 온도를 조절하면서 셀렌화 하였다. 이렇게 구성된 CIGS 흡수층의 특성을 scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray differection (XRD)를 통해서 측정을 하였다.

  • PDF

Zn/HA Coating on the Ti-xNb Alloys after Nanotube Formation for Dental Implant

  • Byeon, In-Seop;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.139-140
    • /
    • 2015
  • Zn/HA coating on the Ti-xNb alloys after nanotube formation for dental lmplant was researched using various experimental methods. Due to g ood biocompatibility and osteoconductivity, hydroxyapatite (HA) coating s on metallic biomedical implants were widely employed in orthopedic and dental applications. To improve biocompatibilities, Zinc (Zn) plays very important roles in the bone formation and immune reg ulations. The nanotube formed Zn-HA films were characterized with X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS).

  • PDF

Hydrothermal Synthesis of Li-Mn Spinel Nanoparticle from K-Birnessite and Its Electrochemical Characteristics (K-Birnessite를 이용한 Li-Mn Spinel 나노입자 합성 및 전기화학적 특성 평가)

  • Kim, Jun-Il;Lee, Jae-Won;Park, Sun-Min;Roh, Kwang-Chul;Sun, Yang-Kook
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.590-592
    • /
    • 2010
  • Li-Mn spinel ($LiMn_2O_4$) is prepared by a hydrothermal process with K-Birnessite ($KMnO_4{\cdot}yH_2O$) as a precursor. The K-Birnessite obtained via a hydrothermal process with potassium permanganate [$KMnO_4$] and urea [$CO(NH_2)_2$] as starting materials are converted to Li-Mn spinel nanoparticles reacting with LiOH. The molar ratio of LiOH/K-Birnessite is adjusted in order to find the effect of the ratio on the structural, morphological and electrochemical performances of the Li-Mn spinel. X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and thermogravimetry (TG) are used to investigate the crystal structure and morphology of the samples. Galvanostatic charge and discharge are carried out to measure the capacity and rate capability of the Li-Mn spinel. The capacity shows a maximum value of $117\;mAhg^{-1}$ when the molar ratio of LiOH/K-Birnessite is 0.8 and decreases with the increase of the ratio. However the rate capability is improved with the increase of the ratio due to the reduction of the particle size.

Fabrication and Characterization Nano Porous Anodic ZrO2 Membranes by Two-Step Anodizing (2 단계 양극 산화를 이용한 ZrO2 나노 다공성 산화막의 제조와 특성에 관한 연구)

  • Seo, Eui-Young;Choi, Se-Kyeong;Shin, Ik-Soo;Kang, Wee-Kyung
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.5
    • /
    • pp.547-553
    • /
    • 2013
  • Zirconium oxide ($ZrO_2$) nano porous membranes were fabricated by electrochemical two-step anodization with an electropolished zirconium substrate in inorganic water-based and organic electrolyte systems containing small amounts of fluoride. Using two-step anodization and organic electrolytes, highly regular and ordered nanotubular $ZrO_2$ oxide layers can be compared with aqueous electrolytes. The morphology and size of the nano porous layers were characterized by FE-SEM (field emission scanning electron microscopy), XRD (X-ray diffraction), and EDS (energy dispersive spectroscopy). Luminescence properties were investigated by photoluminescence measurements.

Component and surface residue observation of barrel finishing media for grinding dental resins (치과용 레진 연마를 위한 바렐 연마재의 성분 분석 및 표면 잔류물 관찰)

  • Jung, An-Na;Park, Yu-Jin;Choi, Sung-Min
    • Journal of Technologic Dentistry
    • /
    • v.43 no.4
    • /
    • pp.145-152
    • /
    • 2021
  • Purpose: This study aimed to produce resin prosthetics using a dental barrel finishing machine. For dental resin grinding, the ingredients of the barrel finishing media were analyzed, and surface residues of the resin were observed. Methods: Two types of barrel finishing media for dental resin grinding were tested. Specimens were made from thermal polymerized, auto polymerized, and photopolymerized resins. Finishing media were analyzed through energy-dispersive X-ray spectroscopy (EDS) component analysis and inductively coupled plasma-optical emission spectrometry (ICP-OES) component analysis. Then, the prepared specimen was barrel finished for 25 minutes using two types of barrel finishing media, and scanning electron microscope was photographed to observe the surface residues. Results: As a result of EDS component analysis, both types of finishing media were analyzed for the components of C, O, Zr and Al elements, and industry media (IM) was further analyzed for the components of Si and Mg elements. In the ICP-OES component analysis, Cd and As, which are harmful elements, were detected in IM, and no harmful elements were detected in manufacturing media (MM). Because of observation of surface residues, no residues were observed in the three types of resin specimens that were barrel finished with two types of finishing media. Conclusion: Surface residue wasn't observed on the specimens polished using two types of finishing media. However, in IM, Cd and As, which are harmful elements, were detected, making it inappropriate for clinical use. In MM, harmful elements were not detected; therefore, clinical use will be possible.