• Title/Summary/Keyword: energy-dispersive x-ray spectroscopy (eds)

Search Result 301, Processing Time 0.03 seconds

Synthesis and Characterization of a Series of PtRu/C Catalysts for the Electrooxidation of CO (일산화탄소 산화를 위한 PtRu/C 시리즈 촉매의 합성 및 특성 연구)

  • Lee, Seonhwa;Choi, Sung Mook;Kim, Won Bae
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.432-439
    • /
    • 2012
  • The electrocatalytic oxidation of CO was studied using carbon-supported 20 wt% PtRu (PtRu/C) catalysts, which were prepared with different Pt : Ru atomic ratios from 7 : 3 to 3 : 7 using a colloidal method combined with a freeze-drying procedure. The bimetallic PtRu/C catalysts were characterized by various physicochemical analyses, including X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). CO stripping voltammetry measurements indicated that the addition of Ru with a Pt catalyst significantly improved the electrocatalytic activity for CO electrooxidation. Among the tested catalysts, the $Pt_5Ru_5/C$ catalyst had the lowest onset potential (vs.Ag/AgCl) and the largest CO EAS. Structural modification via lattice parameter change and electronic modification in the unfilled d band states for Pt atoms may facilitate the electrooxidation of CO.

Comparative Study of Undoped and Nickel-Doped Molybdenum Oxide Photoanodes for PEC Water Splitting

  • Garcia-Garcia, Matias
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.377-389
    • /
    • 2022
  • The current global energy supply depends heavily on fossil fuels. This makes technology such as direct water splitting from harvesting solar energy in photoelectrochemical (PEC) systems potentially attractive due to its a promising route for environmentally benign hydrogen production. In this study, undoped and nickel-doped molybdenum oxide photoanodes (called photoanodes S1 and S2 respectively) were synthesized through electrodeposition by applying -1.377 V vs Ag/AgCl (3 M KCl) for 3 hours on an FTO-coated glass substrate immersed in molibdatecitrate aqueous solutions at pH 9. Scanning electron microscopy (SEM), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) were used for microstructural and compositional characterizations of the photoanodes. In addition, the optical and photoelectrochemical characterizations of these photoanodes were performed by UV-Visible spectroscopy, and linear scanning voltammetry (LSV) respectively. The results showed that all the photoanodes produced exhibit conductivity and catalytic properties that make them attractive for water splitting application in a photoelectrochemical cell. In this context, the photoanode S2 exhibited better photocatalytic activity than the photoanode S1. In addition, photoanode S2 had the lowest optical band-gap energy value (2.58 eV), which would allow better utilization of the solar spectrum.

Effects of Organic Addition agents on Manganese-Phosphate Coating (인산-망간 화성피막에서 유기첨가제에 따른 피막 특성 연구)

  • Seo, Seon-Gyo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.195-195
    • /
    • 2015
  • 본 연구에서는 인산-망간 피막처리 공정 중에 생성되는 슬러지를 방지하기 위하여 인산-망간 화성처리액에 유기첨가제인 Tartaric acid를 첨가하여 내마모성 및 방청성 향상을 목적으로 슬러지를 방지하기 위한 인산-망간 화성피막의 특성을 연구하였다. Tartaric acid의 농도에 따른 표면 Morphology를 Scanning Electron Microscope (SEM)과 Energy Dispersive X-ray spectroscopy (EDS)을 이용하여 분석하였으며, EDS 분석을 통해 Mn, P, Fe, O, C의 성분을 확인 할 수 있었으며, 인산-망간 화성피막의 상(phase)을 확인하기 위하여 X-ray diffraction (XRD)을 분석을 통하여 $(Mn,Fe)_5H_2(PO_4)_44H_2O$으로 구성된 인산-망간 화성피막을 확인할 수 있었다. 또한 Tartaric acid의 농도에 따른 인산-망간 피막의 내마모 시험(Ball on disc) 및 경도시험을 실시하여 기계적인 특성 및 슬러지의 양에 대하여 분석하였다.

  • PDF

Calcium pyrophosphate dihydrate deposition disease in the temporomandibular joint: diagnosis and treatment

  • Kwon, Kwang-Jun;Seok, Hyun;Lee, Jang-Ha;Kim, Min-Keun;Kim, Seong-Gon;Park, Hyung-Ki;Choi, Hang-Moon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.40
    • /
    • pp.19.1-19.6
    • /
    • 2018
  • Background: Calcium pyrophosphate dihydrate deposition disease (CPDD) is a rare disease in the temporomandibular joint (TMJ) space. It forms a calcified crystal mass and induces a limitation of joint movement. Case presentation: The calcified mass in our case was occupied in the left TMJ area and extended to the infratemporal and middle cranial fossa. For a complete excision of this mass, we performed a vertical ramus osteotomy and resected the mass around the mandibular condyle. The calcified mass in the infratemporal fossa was carefully excised, and the segmented mandible was anatomically repositioned. Scanning electronic microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDS) microanalysis was performed to evaluate the calcified mass. The result of SEM/EDS showed that the crystal mass was completely composed of calcium pyrophosphate dihydrate. This result strongly suggested that the calcified mass was CPDD in the TMJ area. Conclusions: CPDD in the TMJ is a rare disease and is difficult to differentially diagnose from other neoplasms. A histological examination and quantitative microanalysis are required to confirm the diagnosis. In our patient, CPDD in the TMJ was successfully removed via the extracorporeal approach. SEM/EDS microanalysis was used for the differential diagnosis.

Morphological and Chemical Analysis of Various Disposable Acupuncture Needles Used in South Korea

  • Dong Yong, Park;JiYoon, Ahn;Hyeon Jeong, Park;Doo Suk, Lee;Dae-Hyun, Jo;Jonghoon, Kim;Choulmin, Kim;Heebum, Chung;Ji Hye, Hwang
    • Journal of Pharmacopuncture
    • /
    • v.25 no.4
    • /
    • pp.382-389
    • /
    • 2022
  • Objectives: The Korean Industrial Standard (KS) for sterile acupuncture needles was established in 2009 based on research on the quality control of acupuncture needles. We aimed to determine the quality of acupuncture needles available in South Korea in 2021 by examining their surface condition and chemical composition using field-emission scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDS). Methods: In South Korea, there are 23 brands of acupuncture needles, and we examined 10-15 needles from each brand, resulting in a total of 285 needles. The microstructures of the needles were assessed by SEM. Using SEM images, we evaluated the acupuncture needle tips for the following defects/aspects: scratches, lumps, detached coating, bent tip, and tip sharpness. EDS was used to determine the chemical composition of the selected acupuncture needles. Results: Overall, 88.4% of 285 needles were found to have at least one type of abnormality. The most frequently observed abnormalities were scratches and dents on the surface (68.1%), followed by detached coating (63.2%), and lumps (61.8%); blunt tips were observed in about 24% of them. Of 252 needles with at least one defect, 86.9% had two or more types of defects. The ratio of the number of needles with any defect to that of needles without any defect varied among brands, ranging from 50% to 100%. Regarding foreign materials, higher proportions of Si and O were observed on the needles, indicating incomplete or detached silicone coating. Conclusion: The quality of acupuncture needles varied among brands, suggesting that further improvements can be made through various inspection methods.

Zinc Accumulation in the Cell of Zinc-Tolerant Bacteria, Pseudomonas chlororaphis, and Recovery of Zinc from the Cells Accumulating Zinc (아연 내성균의 균체내 아연 축적특성 및 균체내 축적된 아연의 회수)

  • 조주식;한문규
    • Journal of Environmental Science International
    • /
    • v.5 no.3
    • /
    • pp.317-327
    • /
    • 1996
  • This study was performed to develop the biological treatment technology of wastewater polluted with heavy metals. Zinc-tolerant microorganism, such as Pseudomonas chlororaphis which possessed the ability to accumulate zinc, was isolated from industrial wastewaters polluted with various heavy metals. The characteristics of zinc accumulation in the cells, recovery of the zinc from the cells accumulating zinc, were investigated. Removal rate of zinc from the solution containing 100 mall of Zinc by zinc-tolerant microorganism was more than 90% at 48 hours after inoiulation of the microorganisms. A large number of the electron-dense granules were found mainly on thIn cell wall and membrane fractions, when determined by transmission electron microscope. Energy dispersive X- ray spectroscopy revealed that the electron-dense granules were zinc complex with the substances binding Heavy metals. The zinc accumulated into cells was not desorbed by distilled water, but more than 80% of the zinc accumulated was desorbed by 0.1M-EDTA. The residues of the cells after combustion at 55$0^{\circ}C$ amounted to about 21% of the dry weight of the cells. EDS analysis showed that the residues were comparatively pure zinc compounds containing more than 79% of zinc.

  • PDF

Tribological Behavior Analysis of CrMoN Coating by XPS (XPS 분석을 통한 CrMoN 코팅의 마찰마모 거동 연구)

  • Yang, Young-Hwan;Lyo, In-Woong;Park, Sang-Jin;Lim, Dea-soon;Oh, Yoon-Suk
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.8
    • /
    • pp.549-556
    • /
    • 2012
  • The tribological behavior of CrMoN films with respect to surface chemistry was investigated by using X-ray photoelectron spectroscopy (XPS). All of the films were prepared from a hybrid PVD system consisting of DC unbalanced magnetron (UBM) sputtering and arc ion plating (AIP) sources. The tribological property of the films was evaluated by a friction coefficient using a Ball-on-disk type tribometer. The chemistry of wear track was analyzed by energy dispersive spectroscopy (EDS) and XPS. The friction coefficient was measured to be 0.4 for the CrMoN film, which is lower than that of a monolithic CrN film. EDS and XPS results imply the formation of an oxide layer on the coating surface, which was identified as molybdenum oxide phases, known to be a solid lubricant during the wear test.

Pt Coating on Flame-Generated Carbon Particles (화염법을 이용한 Pt/C 촉매 제조)

  • Choi, In-Dae;Lee, Dong-Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.116-123
    • /
    • 2009
  • Carbon black, activated carbon and carbon nanotube have been used as supporting materials for precious metal catalysts used in fuel cell electrodes. One-step flame synthesis method is used to coat 2-5nm Pt dots on flame-generated carbon particles. By adjusting flame temperature, gas flow rates and resident time of particles in flame, we can obtain Pt/C nano catalyst-support composite particles. Additional injection of hydrogen gas facilitates pyrolysis of Pt precursor in flame. The size of as-incepted Pt dots increases along the flame due to longer resident time and sintering in high temperature flame. Surface coverage and dispersion of the Pt dots is varied at different sampling heights and confirmed by Transmission electron microscopy (TEM), Energy-dispersive spectra (EDS) and X-ray diffraction (XRD). Crystalinity and surface bonding groups of carbon are investigated through X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.

Synthesis of Trimetallic (PtRu-Sn/VC, PtRu-Ni/VC) Catalysts by Radiation Induced Reduction for Direct Methanol Fuel Cell (DMFC) (방사선환원법을 이용한 직접메탄올연료전지용(DMFC) 삼성분계촉매(PtRu-Sn/VC, PtRu-Ni/VC)의 합성)

  • Kim, Sang Kyum;Park, Ji Yun;Hwang, Sun Choel;Lee, Do Kyun;Lee, Sang Heon;Rhee, Young Woo;Han, Moon Hee
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.320-326
    • /
    • 2013
  • Nano-sized PtRu-Ni/VC and PtRu-Sn/VC electrocatalysts were synthesized by a one-step radiation-induced reduction (RIR) (30 kGy) process using distilled water as the solvent and Vulcan XC-72 as the supporting material. The obtained electrocatalysts were characterized by transmission electron microscopy (TEM), scanning electron microscope energy dispersive spectroscopic (SEM-EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. The catalytic efficiency of electrocatalysts was examined for oxygen reduction, MeOH oxidation and CO stripping decreased in the following order, Hydrogen stripping : PtRu-Sn/VC > PtRu-Ni/VC > PtRu/VC$^{(R)}$ (E-TEK). MeOH oxidation : PtRu-Sn/VC > PtRu-Ni/VC > PtRu/ VC$^{(R)}$ (E-TEK). Unit cell performance : PtRu-Sn/VC > PtRu-Ni/VC > PtRu/VC$^{(R)}$ (E-TEK) catalysts.

Synthesis of Fe-TiB2 Nanocomposite by a combination of mechanical activation and heat treatment

  • Hyunh, Xuan Khoa;Nguyen, Quoc Tuan;Kim, Ji-Sun;Gang, Tae-Hun;Kim, Jin-Cheon;Gwon, Yeong-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.91.2-91.2
    • /
    • 2012
  • The TiB2-reinforced iron matrix nanocomposite (Fe-TiB2) was in-situ fabricated from titanium hydride (TiH2) and iron boride (FeB) powders by a simple and cost-effective process that combines the mechanical activation (MA) and a subsequent heat treatment (HT). Effect of milling factors and synthesized temperatures on the formation of the nanocomposite were presented and discussed. A differential thermal analyser (DSC-TG) was employed for examination of thermal behavior of MAed powders. Phases of the nanocomposite were confirmed by X-ray diffraction analysis (XRD). The morphologies and microstructure of nanocomposite were investigated by field emission-scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDS). Phase composition and distribution were analyzed by electron probe X-ray microanalysis (EPMA). Results showed that TiB2 particles formed in nanoscale were uniformly distributed in alloyed Fe matrix.

  • PDF