• 제목/요약/키워드: energy-based method

검색결과 5,899건 처리시간 0.038초

비선형 해석을 위한 에너지 소산 산정법의 활용 (Application of Energy Dissipation Capacity for Nonlinear Analysis)

  • 임혜정;박홍근;엄태성
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.172-179
    • /
    • 2003
  • In the performance based seismic design method such as the capacity spectrum method, it is required to estimate precisely strength, deformability and energy dissipation of the member. However it merely depends on empirical equations which are not exact in the estimation of energy dissipation capacity. It is same to the generously used computer programs for nonlinear analysis such as DRAIN-2DX. On the other hand, simple equations for evaluating energy dissipation were developed in a recent study, In this paper, based on the evaluation method, a new cyclic behavior model for a flexure-dominated RC member is proposed. Although this model is simplified, it can accurately reflect the variation of energy dissipation capacity with design parameters. Using this model, a program for the nonlinear static/dynamic analysis of RC moment frame structures is also developed.

  • PDF

An Improved Level Set Method to Image Segmentation Based on Saliency

  • Wang, Yan;Xu, Xianfa
    • Journal of Information Processing Systems
    • /
    • 제15권1호
    • /
    • pp.7-21
    • /
    • 2019
  • In order to improve the edge segmentation effect of the level set image segmentation and avoid the influence of the initial contour on the level set method, a saliency level set image segmentation model based on local Renyi entropy is proposed. Firstly, the saliency map of the original image is extracted by using saliency detection algorithm. And the outline of the saliency map can be used to initialize the level set. Secondly, the local energy and edge energy of the image are obtained by using local Renyi entropy and Canny operator respectively. At the same time, new adaptive weight coefficient and boundary indication function are constructed. Finally, the local binary fitting energy model (LBF) as an external energy term is introduced. In this paper, the contrast experiments are implemented in different image database. The robustness of the proposed model for segmentation of images with intensity inhomogeneity and complicated edges is verified.

배터리 충전방식을 고려한 신재생에너지 기반 분산발전시스템의 용량선정 (Optimal Sizing of Distributed Power Generation System based on Renewable Energy Considering Battery Charging Method)

  • 김혜림;김동섭
    • 플랜트 저널
    • /
    • 제17권3호
    • /
    • pp.34-36
    • /
    • 2021
  • 기존의 중앙집중식 발전의 탈피와 에너지 전환 및 환경문제 인식에 의해 신재생에너지 기반의 분산발전시스템에 대한 관심이 증가하고 있다. 본 연구에서는 에너지저장장치로 납축전지를 사용하는 PV 및 WT 기반의 분산발전시스템을 모사하여 최적용량을 선정하였다. 기존 발전원으로 CHP를 채택하였으며 시스템의 최적용량은 기존발전원의 운전상황(전부하/부분부하)에 따라 MOGA를 통해 도출하였다. 또한 동일한 배터리 용량에서 배터리 충전방식이 달라지면 배터리의 수명이 달라지는 것을 확인하였다. 따라서 경제적이고 안정적인 전력수급을 위해서는 배터리 충전방식을 고려한 분산발전시스템의 용량선정이 수행되어야 한다.

An Optimal Installation Strategy for Allocating Energy Storage Systems and Probabilistic-Based Distributed Generation in Active Distribution Networks

  • Sattarpour, Tohid;Tousi, Behrouz
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권6호
    • /
    • pp.350-358
    • /
    • 2017
  • Recently, owing to increased interest in low-carbon energy supplies, renewable energy sources such as photovoltaics and wind turbines in distribution networks have received considerable attention for generating clean and unlimited energy. The presence of energy storage systems (ESSs) in the promising field of active distribution networks (ADNs) would have direct impact on power system problems such as encountered in probabilistic distributed generation (DG) model studies. Hence, the optimal procedure is offered herein, in which the simultaneous placement of an ESS, photovoltaic-based DG, and wind turbine-based DG in an ADN is taken into account. The main goal of this paper is to maximize the net present value of the loss reduction benefit by considering the price of electricity for each load state. The proposed framework consists of a scenario tree method for covering the existing uncertainties in the distribution network's load demand as well as DG. The collected results verify the considerable effect of concurrent installation of probabilistic DG models and an ESS in defining the optimum site of DG and the ESS and they demonstrate that the optimum operation of an ESS in the ADN is consequently related to the highest value of the loss reduction benefit in long-term planning as well. The results obtained are encouraging.

파동전파특성에 기초한 구조 건전도 모니터링 (Structural Health Monitoring Based on Wave Propagation Characteristics)

  • 김승준;박준홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.311-314
    • /
    • 2007
  • The experimental method of measuring dynamic properties of structures was presented. The method is based on the flexural wave propagation characteristics. Using the method, change in structural dynamic properties due to damage is measured. The crack has much more significant impact on the strain energy than the inertial effects. From this, the sensitivity of the dynamic stiffness on the crack location is estimated by calculating the strain energy. When the wave propagates, the strain and kinetic energies shows cyclic changed over space. The crack that occurred at locations where the wave energy is in the form of the potential energy affected most significantly the wave propagation characteristics. The effects of crack location on the wave propagation were used to determine the crack location.

  • PDF

A LMR Core Thermal-Hydraulics Code Based on the ENERGY Model

  • Yang, Won-Sik
    • Nuclear Engineering and Technology
    • /
    • 제29권5호
    • /
    • pp.406-416
    • /
    • 1997
  • A computational method is developed for predicting the steady-state temperature field in an LMR core. Detailed core-wide coolant temperature profiles are efficiently calculated using the simplified energy equation mixing model[1] and the subchannel analysis method. The $\theta$-method is employed for discretizing the energy equations in the axial direction. The interassembly coupling is achieved by interassembly gap flow. Cladding and fuel temperatures are calculated with the one-dimensional conduction model and temperature integrals of conductivities. The accuracy of the method is tested by performing several benchmark calculations for too LMR problems. The results indicate that the accuracy is comparable to the other methods based on ENERGY model. It is also shown that the implicit scheme for the axial discretization is more efficient than the explicit scheme.

  • PDF

무선 센서네트워크에서의 효과적인 에너지 활용 시뮬레이션 (Simulation for the Efficient Utilization of Energy in Wireless Sensor Network)

  • 백승범;조대호
    • 한국시뮬레이션학회논문지
    • /
    • 제14권3호
    • /
    • pp.33-42
    • /
    • 2005
  • One of the imminent problems to be solved within wireless sensor network is to balance out energy dissipation among deployed sensor nodes. In this paper, we present a transmission relay method of communications between BS (Base Station) and CHs (Cluster Heads) for balancing the energy consumption and extending the average lifetime of sensor nodes by the fuzzy logic application. The proposed method is designed based on LEACH protocol. The area deployed by sensor nodes is divided into two groups based on distance from BS to the nodes. RCH (Relay Cluster Head) relays transmissions from CH to BS if the CH is in the area far away from BS in order to reduce the energy consumption. RCH decides whether to relay the transmissions based on the threshold distance value that is obtained as a output of fuzzy logic system, Our simulation result shows that the application of fuzzy logic provides the better balancing of energy depletion and prolonged lifetime of the nodes.

  • PDF

A Localization Method for First and Second Heart Sounds Based on Energy Detection and Interval Regulation

  • Min, Se Dong;Shin, Hangsik
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.2126-2134
    • /
    • 2015
  • The present study suggests a localization method for the first (S1) and the second (S2) feature of heart sounds, based on an algorithm involving frequency filtering, energy detection, and interval regulation. Localization accuracy was evaluated by comparing the algorithm with the traditional Hilbert transform-based localization method. Results show that the sensitivity and the positive predictivity value of proposed method, respectively, were 97.27 % and 99.94 % in S1 detection and 94.99 % and 100 % in S2 detection.

Synthesis and Compaction of Al-based Nanopowders by Pulsed Discharge Method

  • Rhee, Chang-Kyu;Lee, Geun-Hee;Kim, Whung-Whoe
    • 한국분말재료학회지
    • /
    • 제9권6호
    • /
    • pp.433-440
    • /
    • 2002
  • Synthesis and compaction of Al-base nano powders by pulsed discharge method were investigated. The aluminum based powders with 50 to 200 nm of diameter were produced by pulsed wire evaporation method. The powders were covered with very thin oxide layer. The perspective process for the compaction and sintering of nanostructured metal-based materials stable in a wide temperature range can be seen in the densification of nano-sized metal powders with uniformly distributed hard ceramic particles. The promising approach lies in utilization of natural uniform mixtures of metal and ceramic phases, e.g. partially oxidized metal powders as fabricated in our synthesis method. Their particles consist of metal grains coated with oxide films. To construct a metal-matrix material from such powder, it is necessary to destroy the hard oxide coatings of particles during the compaction process. This goal was realized in our experiments with intensive magnetic pulsed compaction of aluminum nanopowders passivated in air.

고분자전해질연료전지를 위한 고장 검출 및 진단 기술 (Fault Detection and Diagnosis Methods for Polymer Electrolyte Fuel Cell System)

  • 이원용;박구곤;손영준;김승곤;김민진
    • 한국수소및신에너지학회논문집
    • /
    • 제28권3호
    • /
    • pp.252-272
    • /
    • 2017
  • Fuel cell systems have to satisfy acceptable operating reliability, sufficient lifetime and price to enter the market in competition with existing products. Fuel cells are made up of complex element technologies and various problems related to the failure of the components can affect the reliability and safety of the system. This problem can be overcome by introducing a monitoring and supervisory control system in addition to automatic control to detect the failure of the fuel cell quickly and properly diagnose the performance degradation. For the fault detection and diagnosis of polymer electrolyte fuel cells, the model based method using the theoretical superposition value and the non-model based method of checking the signal tendency or the converted signal characteristic can be applied. The methods analyzed in this paper can contribute to the development of integrated monitoring and control technology for the whole system as well as the stack.