Browse > Article
http://dx.doi.org/10.7316/KHNES.2017.28.3.252

Fault Detection and Diagnosis Methods for Polymer Electrolyte Fuel Cell System  

LEE, WON-YONG (Fuel Cell Research Center, Korea Institute of Energy Research)
PARK, GU-GON (Fuel Cell Research Center, Korea Institute of Energy Research)
SOHN, YOUNG-JUN (Fuel Cell Research Center, Korea Institute of Energy Research)
KIM, SEUNG-GON (Department of Advance Energy and System Technology, University of Science and Technology)
KIM, MINJIN (Fuel Cell Research Center, Korea Institute of Energy Research)
Publication Information
Journal of Hydrogen and New Energy / v.28, no.3, 2017 , pp. 252-272 More about this Journal
Abstract
Fuel cell systems have to satisfy acceptable operating reliability, sufficient lifetime and price to enter the market in competition with existing products. Fuel cells are made up of complex element technologies and various problems related to the failure of the components can affect the reliability and safety of the system. This problem can be overcome by introducing a monitoring and supervisory control system in addition to automatic control to detect the failure of the fuel cell quickly and properly diagnose the performance degradation. For the fault detection and diagnosis of polymer electrolyte fuel cells, the model based method using the theoretical superposition value and the non-model based method of checking the signal tendency or the converted signal characteristic can be applied. The methods analyzed in this paper can contribute to the development of integrated monitoring and control technology for the whole system as well as the stack.
Keywords
Polymer Electrolyte Fuel Cell(PEFC); Faults detection and diagnosis methods; Model based diagnosis method; Non-model based diagnosis method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. J. Rato and M. S. Reis, "On-line process monitoring using local measures of association: Part I - Detection performance", Chemometr. Intell. Lab., Vol. 142, No. 15, 2015, pp. 255-264.   DOI
2 T. J. Rato and M. S. Reis, "On-line process monitoring using local measures of association: Part II - Design Issues and Fault diagnosis", Chemometr. Intell. Lab., Vol. 142, No. 15, 2015, pp. 255-264.   DOI
3 K. C. Roes, R. J. Does, and Y. Schurink, "Shewhart-type control charts for individual observations", Journal of Quality Technology, Vol. 25, No. 3, 1993, pp. 188-198.   DOI
4 R. P. Leger, W. J. Garland, and W. S. Poehlman, "Fault detection and diagnosis using statistical control charts and artificial neural networks", Artificial Intelligence in Engineering, Vol. 12, No. 1, 1998, pp. 35-47.   DOI
5 A. Khorasani, S. Asghari, A. Mokmeli, M. H. Shahsamand, and B. F. Imani, "A diagnosis method for identification of the defected cell(s) in the PEM fuel cells", Int. J. Hydrogen Energy, Vol. 35, 2010, pp. 9269-9275.   DOI
6 G. Tian, S. Wasterlain, I. Endichi, D. Candusso, F. Harel, X. Francois, M. C. Pera, D. Hissel, and J. M. Kauffmann, "Diagnosis methods dedicated to the localization of failed cells within PEMFC stacks", J. Power Sources, Vol. 182, 2008, pp. 449-461.   DOI
7 M. Ibrahim, U. Antoni, N. Y. Steiner, S. Jemei, C. Kokonendji, B. Ludwig B, P. Mocoteguy, and D. Hissel, "Signal-based diagnostics by wavelet Transform for proton exchange membrane fuel cell", Energy Proced., Vol. 74, 2015, pp. 1508-1516.   DOI
8 E. Pahon, N. Yousfi Steiner, S. Jemei, D. Hissel, P. Mocoteguyc, "A signal-based method for fast PEMFC diagnosis", Appl. Energy, Vol. 165, No. 7, 2016, pp. 748-758.   DOI
9 N. R. Farnum, "Control charts for short runs: nonconstant process and measurement error", Journal of Quality Technology, Vol. 24, No. 3, 1992, pp. 138-144.   DOI
10 D. C. Montgomery, J. B. Keats, G. C. Runger, and W. S. Messina, "Integrating statistical process control and engineering process control", Journal of Quality Technology, Vol. 26, No. 2, 1994, pp. 79-87.   DOI
11 K. C. Roes, R. J. Does, and Y. Schurink, "Shewhart-type control charts for individual observations", Journal of Quality Technology, Vol. 25, No. 3, 1993, pp. 188-198.   DOI
12 C. Damour, M. Benne, B. Grondin-Perez, and M. Bessafi, "Polymer electrolyte membrane fuel cell fault diagnosis based on empirical mode decomposition", J Power Sources, Vol. 299, 2015, pp. 596-603.   DOI
13 B. Legros, P. X. Thivel, Y. Bultel, M. Boinet, and R. P. Nogueira, "Electrochemical Impedance and Acoustic Emission Survey of water desorption in nafion membranes", Electrochem Solid-State Lett, Vol. 12, 2009, pp. B116.   DOI
14 Z. Zheng, R. Petrone, M. C. Pera, D. Hissel, M. Becherif, C. Pianese C, N. Yousfi Steiner, and M. Sorrentino, "A review on non-model based diagnosis methodologies for PEM fuel cell stacks and systems", Int. J. Hydrogen Energy, Vol. 38, 2013, pp. 8914-8926.   DOI
15 H. Li, Y. Tang, Z. Wang, Z. Shi, Z. Wu, D. Song, J. Zhang, K. Fatih, J. Zhang, H. Wang, Z. Liu, and R. Abouatallah, "A review of water flooding issues in the proton exchange membrane fuel cell", J. Power Sources, Vol. 178, No. 1, 2008, pp. 103-117.   DOI
16 K. Brik, F. Ben Ammar, A. Djerdir, and A. Miraoui, "Causal and fault trees analysis of proton exchange membrane fuel cell degradation", J. Fuel Cell Sci. Technol., Vol. 12, 2015, pp. 051002.   DOI
17 V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri, and K. Yin, "A review of process fault detection and diagnosis part I: quantitative model based methods", Comput Chem. Eng, Vol. 27, 2003, pp. 293-311.   DOI
18 S. Collong and R. Kouta, "Fault tree analysis of proton exchange membrane fuel cell system safety", Int. J. Hydrogen Energy, Vol. 41, 2015, pp. 8248-8260.
19 R. Isermann, "Model-based fault-detection and diagnosis - status and applications", Annu. Rev. Control, Vol. 29, 2005, pp. 71-85.   DOI
20 R. Isermann, "Supervision, fault-detection and fault-diagnosis methods - An introduction", Control Eng. Pract., Vol. 5, No. 3, 1997, pp. 639-652.   DOI
21 R. Petrone, Z. Zheng, D. Hissel, M. C. Pera, C. Pianese, M. Sorrentino, M. Becherif, and N. Yousfi-Steiner, "A review on model-based diagnosis methodologies for PEMFCs", Int. J. Hydrogen Energy, Vol. 38, 2013, pp. 7077-7091.   DOI
22 S. C. Marco and M. D. Mueller, "A Fault Diagnosis Toolbox Applying Classification and Inference Methods", IFAC Proceedings, Vol. 42, No. 8, 2009, pp. 486-491.
23 C. Nan, F. Khan, and M. T. Iqbal, "Real-time fault diagnosis using knowledge-based expert system", Process Saf. Environ. Prot., Vol. 86, 2008, pp. 55-71.   DOI
24 Z. Li, R. Outbib, D. Hissel, and S. Giurgea, "Data-Driven diagnosis of PEM fuel cell: A comparative study", Control Eng. Pract., Vol. 28, 2014, pp. 1-12.   DOI
25 J. M. House, W. Y. Lee, and D. R. Shin, "Classification techniques for Fault Detection and Diagnosis of an Ai-Handling Unit", ASHRAE Trans. CH-99-18-5, 1999, pp. 1087-1097.
26 Z. Li, R. Outbib, S. Giurgea, D. Hissel, S. Jemei, A. Giraud, and S. Rosini, "Online implementation of SVM based fault diagnosis strategy for PEMFC systems", Applied Energy, Vol. 164, 2016, pp. 284-293.   DOI
27 L. Placca and Kouta R, "Fault tree analysis for PEM fuel cell degradation process modelling", Int. J. Hydrogen Energy, Vol. 36, No. 12, 2011, pp. 393-405.
28 Q. Yang, A. Aitouche, and B.O. Bouamama, "Structural analysis for air supply system of fuel cell", Int. Renew Energy Congr., 2009, pp. 5-7.
29 A. Benmouna, M. Becherif, D. Depernet, F. Gustin, H. S. Ramadan, and S. Fukuhara, "Fault diagnosis methods for Proton Exchange Membrane Fuel Cell system", Int. J. Hydrogen Energy, Vol. 42, 2017, pp. 1534-1543.   DOI
30 Q. Yang, A. Aitouche, and B. O. BouamamaO, "Structural Analysis for Fault Detection and Isolation in Fuel Cell Stack System, Sustainability in Energy and Buildings", Sustainability in Energy and Buildings, 2009, pp. 239-254.
31 M. Whiteley, S. Dummet, and L. Jackson, "Failure Mode and Effect Analysis, and Fault Tree Analysis of Polymer Electrolyte Membrane Fuel Cells", Int. J. Hydrogen Energy, Vol. 41, 2016, pp. 1187-1202.   DOI
32 K. Teranishi, S. Tsushima, and S. Hirai S. "Analysis of water transport in PEFCs by magnetic resonance imaging measurement", J. Electrochem. Soc., Vol. 153, 2006, pp. A664-A668.   DOI
33 J. Wu, X. Z. Yuan, H. Wang, M. Blanco, J. J. Martin, and J. Zhang, "Diagnostic tools in PEM fuel cell research: Part I Electrochemical techniques", Int. J. Hydrogen Energy, Vol. 33, 2008, pp. 1735-1746.   DOI
34 X. Yuan, H. Wang, J. C. Sun, and J. Zhang, "AC impedance technique in PEM fuel cell diagnosis-A review", Int. J. Hydrogen Energy, Vol. 32, 2007, pp. 4365-4380.   DOI
35 G. Mousa, F. Golnaraghi, J. Devaal, and A. Young, "Detecting proton exchange membrane fuel cell hydrogen leak using electrochemical impedance spectroscopy method", J. Power Sources, Vol. 246, 2014, pp. 110-116.   DOI
36 Paris Agreement - Status of Ratification, http://unfccc.int/paris_agreement/items/9444.php.
37 T. Escobet, A. Nebet, and F. Mugica, "PEM fuel cell fault diagnosis via a hybrid methodology based on fuzzy and pattern recognition techniques", Eng. Appl. Artif. Intell., Vol. 36, 2014, pp. 40-53.   DOI
38 M. Shao, X. J. Zhu, H. F. Cao, and H. F. Shen, "An artificial neural network ensemble method for fault diagnosis of proton exchange membrane fuel cell system", Energy, Vol. 67, 2014, pp. 268-275.   DOI
39 Z. Zheng, M. C. Pera, D. Hissel, M. Becherif, K. S. Agbli and Y. Li, "A double-fuzzy diagnostic methodology dedicated to online fault diagnosis of proton exchange membrane fuel cell stacks", J. Power Sources, Vol. 271, 2014, pp. 570-581.   DOI
40 J. Lamrminie and A. Dicks, "Fuel Cell System Explained", John Wiley, USA, 2003.
41 F. Barbir, "PEM fuel cells: theory and practice. Academic Press Series series editor", Elsevier Academic Press, Netherlands, 2005.
42 DOE, "The Department of Energy Fuel Cell Technology Office, Multi-Year Research, Development, and Demonstration Plan", 2016.
43 NEDO, "Road map of hydrogen and fuel cell 2010", http://www.nedo.go.jp/library/battery_hydrogen.html.
44 W. Y. Lee, "Computer-aided practical application of faults detection and diagnosis techniques in energy systems", Korea Institute of Energy Research Report, 1999, KIER-996816.
45 R. Isermann, "Process fault detection based on modeling and estimation methods-A survey", Automatica, Vol. 20, No. 4, 1984, pp. 387-404.   DOI
46 P. M. Frank, "Fault Diagnosis in Dynamic System Using Analytical and Knowledge-based Redundancy - A Survey and Some New Results", Automatica, Vol. 20, No. 3, 1990, pp. 459-474.
47 S. Lira, V. Puig, J. Quevedo, and A. Husar, "LPV observer design for PEM fuel cell system: Application to fault detection", Int. J. Power Source, Vol. 196, 2011, pp. 4298-4305.   DOI
48 S. Fukuhara, N. Marx, K. Ettihir, L. Boulon, Y. Ait-Amirat, and M. Becherif, "A lumped fluidic model of an anode chamber for fault tolerant strategy design", Int. J. Hydrogen Energy, Vol. 41, No. 50, 2016, pp. 37-47.
49 T. Escobet, D. Feroldi, S. de Lira, V. Puig, J. Quevedo, J. Riera, and M. Serra, "Model-based fault diagnosis in PEM fuel cell systems", J. Power Sources, Vol. 192, 2009, pp. 216-223.   DOI
50 G. Tina, S. Wasterlain, D. Candusso, F. Harel, D. Hissel, and X. Francois, "Identification of failed cells inside PEMFC stacks in two cases: Anode/cathode crossover and anode/cooling compartment leak", Int. J. Hydrogen Energy, Vol. 35, 2010, pp. 2772-2776.   DOI
51 W. Y. Lee, G. G. Park, T. H. Yang, Y. G. Yoon, and C. S. Kim, "Empirical modeling of polymer electrolyte membrane fuel cell performance using artificial neural networks", Int. J. Hydrogen Energy, Vol. 29, 2004, pp. 961-966.
52 A. Saengrung, A. Abtahi, and A. Zilouchian, "Neural network model for a commercial PEM fuel cell system", J. Power Sources, Vol. 172, 2007, pp. 749-759.   DOI
53 K. M. Kamal, D. Yu, and D. L. Yu, "Fault detection and isolation for PEM fuel cell l Stack with independent RFB model", Eng. Appl. Artif. Intell., Vol. 28, 2014, pp. 52-63.   DOI
54 N. Y. Steiner, D. Hissel, P. H. Mocoteguy, and D. Candusso, "Diagnosis of polymer electrolyte fuel cells failure modes (flooding & drying out) by neural networks modeling", Int. J. Hydrogen Energy, Vol. 36, 2011, pp. 3067-3075.   DOI
55 D. Hissel, M. C. Pera, and J. M. Kauffmann, "Diagnosis of automotive fuel cell power generators", J. Power Sources, Vol. 128, 2004, pp. 239-246.   DOI
56 E. Lechartier, E. Laffly, M. C. Pera, R. Gouriveau, D. Hissel, and N. Zerhouni, "Proton exchange membrane fuel cell behavioral model suitable for prognostics", Int. J. Hydrogen Energy, Vol. 40, 2015, pp. 8384-8397.   DOI
57 Z. D. Zhong, X. J. Zhu, and G. Y. Cao, "Modeling a PEMFC by a support vector machine", J. Power Sources, Vol. 160, No. 1, 2006, pp. 293-298.   DOI
58 X. Li, G. Y. Cao, and X. J. Zhu, "Modeling and control of PEMFC based on least squares support vector machines", Energy Convers. Manage., Vol. 47, No. 7, 2006, pp. 1032-1050.   DOI
59 C. H. Li, X. J. Zhu, G. Y. Cao, S. Sui, and M. R. Hu, "Identification of the Hammerstein model of a PEMFC stack based on least squares support vector machines", J. Power Sources, Vol. 175, No. 1, 2008. pp. 303-316.   DOI
60 J. Hua, L. Lu, M. Ouyang, J. Li, and L. Xu, "Proton exchange membrane fuel cell system diagnosis based on the signed directed graph method", J. Power Sources, Vol. 196, 2011, pp. 5881-5888.   DOI
61 N. Chatti, B. Ould-Bouamama, A. L. Gehin, and R. Merzouki, "Merging Bond Graph and Signed Directed Graph to improve FDI procedure", European Control Conference (ECC), 2013, pp. 1457-1462.