• Title/Summary/Keyword: energy usage

Search Result 963, Processing Time 0.028 seconds

Sensor technology for environmental monitoring of shrimp farming (새우양식 환경 모니터링을 위한 센서기술 동향 분석)

  • Hur, Shin;Park, Jung Ho;Choi, Sang Kyu;Lee, Chang Won;Kim, Ju Wan
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.154-164
    • /
    • 2021
  • In this study, the IoT sensor technology required for improving the survival rate and high-density productivity of individual shrimp in smart shrimp farming (which involves the usage of recirculating aquaculture systems and biofloc technology) was analyzed. The principles and performances of domestic and overseas water quality monitoring IoT sensors were compared. Furthermore, the drawbacks of existing aquaculture monitoring technologies and the countermeasures for future aquaculture monitoring technologies were examined. In particular, for farming white-legged shrimp, an IoT sensor was employed to collect measurement indicators for managing the water quality environment in real-time, and the IoT sensor-based real-time monitoring technology was then analyzed for implementing the optimal farming environment. The results obtained from this study can potentially contribute to the realization of an autonomous farming platform that can improve the survival rate and productivity of shrimp, achieve feed reduction, improve the water quality environment, and save energy.

Analysis of Distributed Computational Loads in Large-scale AC/DC Power System using Real-Time EMT Simulation (대규모 AC/DC 전력 시스템 실시간 EMP 시뮬레이션의 부하 분산 연구)

  • In Kwon, Park;Yi, Zhong Hu;Yi, Zhang;Hyun Keun, Ku;Yong Han, Kwon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.159-179
    • /
    • 2022
  • Often a network becomes complex, and multiple entities would get in charge of managing part of the whole network. An example is a utility grid. While the entire grid would go under a single utility company's responsibility, the network is often split into multiple subsections. Subsequently, each subsection would be given as the responsibility area to the corresponding sub-organization in the utility company. The issue of how to make subsystems of adequate size and minimum number of interconnections between subsystems becomes more critical, especially in real-time simulations. Because the computation capability limit of a single computation unit, regardless of whether it is a high-speed conventional CPU core or an FPGA computational engine, it comes with a maximum limit that can be completed within a given amount of execution time. The issue becomes worsened in real time simulation, in which the computation needs to be in precise synchronization with the real-world clock. When the subject of the computation allows for a longer execution time, i.e., a larger time step size, a larger portion of the network can be put on a computation unit. This translates into a larger margin of the difference between the worst and the best. In other words, even though the worst (or the largest) computational burden is orders of magnitude larger than the best (or the smallest) computational burden, all the necessary computation can still be completed within the given amount of time. However, the requirement of real-time makes the margin much smaller. In other words, the difference between the worst and the best should be as small as possible in order to ensure the even distribution of the computational load. Besides, data exchange/communication is essential in parallel computation, affecting the overall performance. However, the exchange of data takes time. Therefore, the corresponding consideration needs to be with the computational load distribution among multiple calculation units. If it turns out in a satisfactory way, such distribution will raise the possibility of completing the necessary computation in a given amount of time, which might come down in the level of microsecond order. This paper presents an effective way to split a given electrical network, according to multiple criteria, for the purpose of distributing the entire computational load into a set of even (or close to even) sized computational loads. Based on the proposed system splitting method, heavy computation burdens of large-scale electrical networks can be distributed to multiple calculation units, such as an RTDS real time simulator, achieving either more efficient usage of the calculation units, a reduction of the necessary size of the simulation time step, or both.

Development of Intelligent Outlets for Real-Time Small Power Monitoring and Remote Control (실시간 소전력 감시 및 원격제어용 지능형 콘센트 개발)

  • Kyung-Jin Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.169-174
    • /
    • 2023
  • Currently, overall power usage is also increasing as power demand such as homes, offices, and factories increases. The increase in power use also raised interest in standby power as a change in awareness of energy saving appeared. Home and office devices are consuming power even in standby conditions. Accordingly, there is a growing need to reduce standby power, and it aims to have standby power of 1W or less. An intelligent outlet uses a near-field wireless network to connect to a home network and cut or reduce standby power of a lamp or appliance connected to an outlet. This research aims to develop a monitoring system and an intelligent outlet that can remotely monitor the amount of electricity used in a lighting lamp or a home appliance connected to an outlet using a short-range wireless network (Zigbee). Also, The intelligent outlet and monitoring system developed makes it possible for a user to easily cut off standby power by using a portable device. Intelligent outlets will not only reduce standby power but also be applicable to fire prevention systems. Devices that cut off standby power include intelligent outlets and standby power cutoff switches, so they will prevent short circuits and fires.

Non-linear effects of demand-supply based metro accessibility on land prices in Seoul, Republic of Korea: Using G2SFCA Approach (서울시 수요-공급 기반 지하철 접근성이 토지가격에 미치는 비선형적 영향: G2SFCA 적용을 중심으로)

  • Kang, Chang-Deok
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.2
    • /
    • pp.189-210
    • /
    • 2022
  • Cities around the world have paid attention to public transportation as an alternative to reducing traffic congestion caused by automobile usage, excessive energy consumption, and environmental pollution. This study measures accessibility to subway stations in Seoul using a supply-demand-based accessibility technique. Then, the impacts were analyzed through land prices by use and segment. As a result of analysis using the multilevel hedonic price models, accessibility considering both supply and demand for the subway had a positive effect on both residential and non-residential land prices. The effect was stronger for residential than for non-residential. Further, among the accessibility measured by the three functions, the accessibility by the Exponential function was most suitable for the residential land price, and the accessibility measured by the Power function for the non-residential land price had the highest explanatory power. Also, looking at the impacts by land price segments, it was found that higher access to metro stations had the greatest positive impacts on the most expensive segment of residential and non-residential land prices. The results of this study can be applied not only to identify the impacts of public investment on neighborhoods, but also to support real estate valuation.

Techno-economic Analysis and Environmental Impact Assessment of a Green Ammonia Synthesis Process Under Various Ammonia Liquefaction Scenarios (암모니아 액화 시나리오에 따른 그린암모니아 합성 공정의 경제성 및 환경 영향도 평가)

  • Gunyoung Kim;Yinseo Song;Boram Gu;Kiho Park
    • Korean Chemical Engineering Research
    • /
    • v.62 no.2
    • /
    • pp.163-172
    • /
    • 2024
  • In this study, two different scenarios for ammonia liquefaction in the green ammonia manufacturing process were proposed, and the economic-feasibility and environmental impact of each scenario were analyzed. The two liquefaction processes involved gas-liquid separation before cooling at high pressure (high pressure cooling process) or after decompression without the gas-liquid separation (low pressure cooling process). The high-pressure cooling process requires higher capital costs due to the required installation of separation units and heat exchangers, but it offers relatively lower total utility costs of 91.03 $/hr and a reduced duty of 2.81 Gcal/hr. In contrast, although the low-pressure cooling process is simpler and cost-effective, it may encounter operational instability due to rapid pressure drops in the system. Environmental impact assessment revealed that the high-pressure cooling process is more environmentally friendly than the low-pressure cooling process, with an emission factor of 0.83 tCO2eq less than the low-pressure cooling process, calculated based on power usage. Consequently, the outcomes of this study provide relevant scenario and a database for green ammonia synthesis process adaptable to various process conditions.

Identification of Major Crude Oils Imported into Korea using Molecular and Stable Carbon Isotopic Compositions (분자지표 및 탄소안정동위원소 조성비를 이용한 국내 수입 주요 원유의 식별)

  • Kim, Eun-Sic;An, Jun-Geon;Kim, Gi-Beum;Shim, Won-Joon;Joo, Chang-Kyu;Kim, Moon-Koo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.247-256
    • /
    • 2012
  • Stable carbon isotope ratio of oil components are known to be unaffected by weathering processes and thus has been widely used to determine the origin of spilled oil. In this study, molecular index and composition of stable carbon isotope in 15 crude oils and petroleum product were analyzed and used as oil fingerprints to determine the discriminating power of each fingerprinting method among target crude oils. Through the fingerprints of alkane distribution only Bintulu and B-C(1%) were distinguishable from other crude oils. The pristane/phytane ratio can classify the crude oils into three groups but differentiation of crude oils within a group was impossible using the ratio. The crude oils of A.L., A.S.L., Foroozan and B-C(1%) were differentiated from the other oils using PAH source recognition indexes of C2D/C2P and C3D/C3P. The usage of 4-mD/1-mD and 2/3-mD/1-mD ratio was able to distinguish A.S.L., Bintulu and Oman from the other crude oils. However the PAH source recognition ratios in the other crude oils were similar and thus they were impractical to be used for source identification among the target crude oils. Stable carbon isotope ratios of alkanes were able to uniquely specify each crude oil in the plot of ${\delta}^{13}C_{C21}$ and ${\delta}^{13}C_{C25}$ except A.L., A.M., Qatar-Marine, B-C(1%). The oil fingerprinting method using stable carbon isotope ratios of individual alkane compounds showed more discriminating power among the target crude oils than the conventional source recognition indexes of PAHs or alkanes.

An Analytical Study of Geologic Characteristics and Production- Related Problems of Beep Natural Gas Resources (심부 천연가스의 지질학절 부존 환경 특성과 생산관련 현안 문제점 분석 연구)

  • Chang Seungyong
    • 한국석유지질학회:학술대회논문집
    • /
    • autumn
    • /
    • pp.28-46
    • /
    • 2001
  • Natural gas is a mixture of hydrocarbon gases and impurities such as nitrogen, hydrogen sulfide, and carbon dioxide and a clean energy producing no pollution materials for combustion. Currently, the demand of the natural gas is rapidly increasing due to worldwide environmental problems. According to Hubbert's study in the past, the natural gas was predicted as rapidly depleted resources, and then the results led to high gas price and limitation of usage during 1980s. Afterward, the study of natural gas resources based on geology identified the additional natural gas resources that were not considered in Hubbert's study. They are unconventional gas, additional resources in the existed reservoirs, and natural gas in deep subsurface areas. Such additional resouces made the future of natural gas bright and pormised low and stable gas price in the future. Deep natural gas is defined as the gas existing at or below 15,000ft$(4,752{\cal}m)$ in depth from the surface. According to the study from the U.S. Geological Survey(USGS) in 1995, 1,412 TCF of technically recoverable natural gas was remained to be discovered or developed in the onshore of United States. A significant part of that resource base, 114 TCF, exists at deep sedimentary basins, and it shows wide distribution with various geological environments. In 1995, the deep gas contributed to $6.7\% of total supply amount of natural gas in the United States and is expected to be $18.7\% by 201.5. However, the development of the deep gas is a high risky business due to expensive investment and high portion of dry holes, although it is developed. Thus, for developing the deep gas economically, it is necessary to overcome many technical challenges. In this paper, for increasing success rate of the deep gas, 1) geologic and compositional characteristics, and production cost have been analyzed according to depth, 2) technical problems related to deep gas production have been summarized, and 3) finally future study areas for increasing application of the deep gas have been suggested. For reference, this paper was written based on the study results from USGS and Gas Research Institute(GRI), for the United States is doing the most active R&D in the deep gas area, and thus, has many reliable data.

  • PDF

Evaluation of Radiation Shielding Rate of Lead Aprons in Nuclear Medicine (핵의학과에서 사용하는 납 앞치마의 방사선 차폐율 평가)

  • Han, Sang-Hyun;Han, Beom-Heui;Lee, Sang-Ho;Hong, Dong-Heui;Kim, Gi-Jin
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.41-47
    • /
    • 2017
  • Considering that the X-ray apron used in the department of radiology is also used in the department of nuclear medicine, the study aimed to analyze the shielding rate of the apron according to types of radioisotopes, thus ${\gamma}$ ray energy, to investigate the protective effects. The radioisotopes used in the experiment were the top 5 nuclides in usage statistics $^{99m}Tc$, $^{18}F$, $^{131}I$, $^{123}I$, and $^{201}Tl$, and the aprons were lead equivalent 0.35 mmPb aprons currently under use in the department of nuclear medicine. As a result of experiments, average shielding rates of aprons were $^{99m}Tc$ 31.59%, $^{201}Tl$ 68.42%, and $^{123}I$ 76.63%. When using an apron, the shielding rate of $^{131}I$ actually resulted in average dose rate increase of 33.72%, and $^{18}F$ showed an average shielding rate of -0.315%, showing there was almost no shielding effect. As a result, the radioisotopes with higher shielding rate of apron was in the descending order of $^{123}I$, $^{201}Tl$, $^{99m}Tc$, $^{18}F$, $^{131}I$. Currently, aprons used in the nuclear medicine laboratory are general X-ray aprons, and it is thought that it is not appropriate for nuclear medicine environment that utilizes ${\gamma}$ rays. Therefore, development of nuclear medicine exclusive aprons suitable for the characteristics of radioisotopes is required in consideration of effective radiation protection and work efficiency of radiation workers.

Elemental analysis of the fluoride varnish effects on root caries initiation (불소 바니쉬 도포 후 초기 치근 우식 발현에 대한 정량원소분석)

  • Park, Se-Eun;Yi, Kee-Wook;Kim, Hae-Young;Son, Ho-Hyun;Chang, Ju-Hea
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.4
    • /
    • pp.290-299
    • /
    • 2011
  • Objectives: The usage of fluoride varnish for a moderate to low caries-risk group has not been well validated. This study aimed to evaluate the preventive and therapeutic efficacies of fluoride varnish on the initiated root caries. Materials and Methods: Ten premolars were sectioned into quarters, further divided into two windows, one of which was painted with Fluor Protector (1,000 ppm fluoride, Ivoclar Vivadent). An initial lesion with a well-preserved surface layer was produced by pH cycling. Scanned line analysis using energy dispersive spectrometry determined the weight percentages of Ca and P in the demineralized layer. Scanning Electron microscopy and confocal laser scanning microscopy (CLSM) evaluated the varnish-applied root surfaces. Results: The mean lesion depth (SD) was 12.3 (2.6) ${\mu}m$ (single cycling) and 19.6 (3.8) ${\mu}m$ (double cycling). Double cycling extended the lesion depth, but induced no more mineral loss than single cycling (p < 0.05). The mean weight percentages of Ca and P between groups with and without varnish were not significantly different (p < 0.05). A CLSM showed varnish remained within 15 ${\mu}m$ of the surface layer. Conclusions: When a mild acid challenge initiated root tissue demineralization, the application of low-concentration fluoride varnish did not influence the lesion depth or the mineral composition of the subsurface lesion.

Effects of Antimicrobials on Methane Production in an Anaerobic Digestion Process (혐기소화공정에서 항생항균물질이 메탄생성에 미치는 영향)

  • Oh, Seung-Yong;Park, Noh-Back;Park, Woo-Kyun;Chun, Man-Young;Kwon, Soon-Ik
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.295-303
    • /
    • 2011
  • BACKGROUND: Anaerobic digestion process is recently adapted technology for treatment of organic waste such as animal manure because the energy embedded in the waste can be recovered from the waste while the organic waste were digested. Ever increased demand for consumption of meat resulted in the excessive use of antimicrobials to the livestocks for more food production. Most antimicrobials administered to animals are excreted through urine and feces, which might highly affect the biological treatment processes of the animal manure. The aim of this study was to investigate the effects of antimicrobials on the efficiency of anaerobic digestion process and to clarify the interactions between antimicrobials and anaerobes. METHODS AND RESULTS: The experiment was consisted of two parts 1) batch test to investigate the effects of individual antibiotic compounds on production of methane and VFAs(volatile fatty acids), and removal efficiency of organic matter, and 2) the continuous reactor test to elucidate the effects of mixed antimicrobials on the whole anaerobic digestion process. The batch test showed no inhibitions in the rate of methane and VFAs production, and the rate of organic removal were observed with treatment at 1~10 mg/L of antimicrobials while temporary inhibition was observed at 50 mg/L treatment. In contrast, treatment of 100 mg/L antimicrobials resulted in continuous decreased in the rate of methane production and organic removal efficiency. The continuous reactor test conduced to see the influence of the mixed antimicrobials showed only small declines in the methane production and organic matter removal when 1~10 mg/L of combined antimicrobials were applied but this was not significant. In contrast, with the treatment of 50 mg/L of combined antimicrobials, the rate of organic removal efficiency in effluent decreased by 2~15% and the rate of biogas production decreased by 30%. CONCLUSION(s): The antimicrobials remained in the animal manure might not be removed during the anaerobic digestion process and hence, is likely to be released to the natural ecosystem. Therefore, the efforts to decline the usage of antimicrobials for animal farming would be highly recommended.