• 제목/요약/키워드: energy transformation

Search Result 666, Processing Time 0.027 seconds

A Study on the Effect of Fluidizing Media on the N2O Production in Fluidized Bed Incineration of Sewage Sludge (하수슬러지 유동층 소각에서 유동매체가 N2O 발생에 미치는 영향에 관한 연구)

  • Park, Jong-Ju;Lee, Seung-Jae;Ryu, In-Soo;Jeon, Sang Goo;Park, Yeong-Sung;Moon, Seung-Hyun
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.390-397
    • /
    • 2014
  • This study was performed to investigate the effects of fluidizing media on $N_2O$ production in fluidized bed incineration of sewage sludge. The fluidized media were prepared in a form of 2 mm bead by mixing zeolite powders in our lab. Sand having 0.4 mm of the mean size showed 0.44 m/s of minimum fluidization velocity ($U_{mf}$), while the prepared zeolite media 0.5 m/s. When the ratio of fluidizing media height to the inside diameter of the incinerator (bed aspect ratio) increased from 1.4 to 3.1, it was found that $U_{mf}$ of the zeolite media was varied from 0.5 m/s to 0.7 m/s. Under the operation conditions in 1.79 of excess air ratio, $909^{\circ}C$ of bed temperature and ca. 1.65 m/s of superficial velocity, as the weight of fluidizing meadia was increased, $O_2$ concentration in the flue gas was slightly decreased, and $CO_2$ increased. Above 6 kg of fluidizing media weight (1.98 of bed aspect ratio), it was observed that $N_2O$ concentration was significantly reduced, which might result from the decomposition of $N_2O$ on the zeolite media rather than transformation of $N_2O$ to NOx. On the other hand, in a variation of the zeolite media mixing ratio to sand and bed temperature at a constant total bed height, significant difference was exhibited in $N_2O$ emission concentration according to the temperature. Considering the operation temperature in the incineration, the effective calcination temperature of the zeolite media was suggested to be around $900^{\circ}C$.

Assessment of Vibration Produced by the Grinder Used in the Shipbuilding Industry and Development of Prospective Prevalence Model of Hand-arm Vibration Syndrome (선박건조업에서 사용되는 그라인더의 진동평가와 수지진동증후군 예측 모델 개발)

  • Yim, Sanghyuk;Lee, Yunkeun;Park, Hee-Sok
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.4
    • /
    • pp.398-412
    • /
    • 2006
  • The purpose of this study is to investigate the relationship between the acceleration of vibration by the powered hand tools used in the shipbuilding industry, and to develop the prospective prevalence model for the hand-arm vibration syndrome among the shipbuilding workers.The acceleration levels and frequencies of six types of grinder were measured using the ISO5349 method along with the time of exposure to the vibration from the powered hand tools. Medical examination for 114 workers were performed using the cold provocation test. Comparisons were made between the estimated prevalence of hand-arm vibration syndrome from ISO5349 and the observed values from the medical examinations. By multiple regression, we developed the prospective prevalence model of hand-arm vibration syndrome produced by the hand tools used in the shipbuilding industry. 4 hour-energy-equivalent frequency-weighted accelerations were $6.23m/s^2$ in the grinding job done after welding, and $13.39m/s^2$ in the grinding job done before painting. The mean exposure time while holding powered hand tools was 4.64 hours. Prevalence rates of Raynaud's Phenomenon were 12.04% in the grinding after soldering, and 42.9% in the grinding before painting measured using the ISO5349 method. After exposure to vibration for 10.79 years, about a half of the workers in the grinding after welding could developed Raynaud's Phenomenon. For the workers in the grinding before painting, the latency was 5.02 years. The ISO equation for dose response relationship was not significantly correlated with observed recovery rates of finger skin temperatures, blood flows and amplitudes of nerve conduction velocities. A multiple regression model for dose-response relationship was proposed from the results. Recovery rate of the skin temperatures = -0.668+ 0.337 ${\times}$ 4 hour energy equivalent frequency-weighted accelerations + 0.767 ${\times}$ duration of vibration exposure(years) The validity was proved by multiple regression analysis after correlation transformation and regression results based on model-building data and validation data.

Shoreline Changes Caused by the Construction of Coastal Erosion Control Structure at the Youngrang Coast in Sockcho, East Korea (속초 영랑해안 해빈침식대책 인공구조물 건설에 기인하는 해안선 변화)

  • Kang, Yoon-Koo;Park, Hyo-Bong;Yoon, Han-Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.4
    • /
    • pp.296-304
    • /
    • 2010
  • The shoreline change caused by the construction of shore protection structures are discussed based on the example of Youngrang coast, Sokcho where the coastal erosion control system(CECS), three artificial headlands and two submerged breakwaters are being constructed. The study qualitatively analyzed the shoreline changes of Youngrang coast using available satellite/aerial photographs and camera photographs taken during the construction period of 6 years since 2002 for the artificial headlands construction. The main results from the study are as following. (1) Before the installation of the middle artificial headland, longshore drifts along Youngrang coast are transported in the NW-SE direction according to the seasonally different wave characteristics. (2) During the CECS construction the shoreline is continuously changed by altering the local longshore drift budget. Especially, the middle artificial headland induces considerable change of shoreline by blocking the sediment supply from the southern pocket beach to the northern pocket beach and by accelerating the sediment accretion at the wave shadow zone behind its head. It induces the asymmetry on the net longshore drift causing the significant erosion at the center of the southern pocket beach. (3) The study demonstrates that serious unintended erosion/accretion problem are possibly occurred due to local changes on the wave transformation and the sediment transport by the construction of coastal erosion control system.

Application and Analysis of the Steady State Spectral Wave Model Take into Account the Effect of Current (흐름의 영향을 고려한 정상상태 스펙트럼 파랑모델의 적용 및 분석)

  • Lee, Hak-Seung;Lee, Joong-Woo;Yang, Sang-Yong
    • Journal of Navigation and Port Research
    • /
    • v.28 no.1
    • /
    • pp.97-104
    • /
    • 2004
  • Introduction of wave model, take into account the effect of tide, wind and wave induced currents at the coastal waters of complex bathymetry, is a very important factor for most coastal engineering design and disaster protection problems. As the steady state spectral wave model could simulate depth induced wave shoaling and refraction, current induced refraction effect, steepness induced wave breaking, diffraction, wind wave growth, wave-wave interaction, and wave-current interaction that redistribute energy, this would support and compensate the gap in the real field of design where other wave models could not deal and cause wrong estimation. In this study, for better understanding and analysis of wave transformation process, we applied the spectral wave model to the large coastal waters near Gaduck Island where the Busan new port construction project is going on. We also compared the simulation results with the calculatea from the existing model. From such a trial of this study, we hope that broader and safer use of the spectral model in the area of port design and disaster prevention system come through in near future.

Variation of Harbor Response due to Construction of A New Port in Youngil Bay (영일만 신항 건설에 따른 항만 정온도의 변화)

  • Kim, Ji-Yeon;Lee, Joong-Woo;Lee, Hak-Seung;Yang, Sang-Yong
    • Journal of Navigation and Port Research
    • /
    • v.28 no.5
    • /
    • pp.421-428
    • /
    • 2004
  • Introduction of wave model, considered the effect of shoaling, refraction, diffraction, partial reflection, bottom friction, breaking at the coastal waters of complex bathymetry, is a very important factor for most coastal engineering design and disaster prevention problems. As waves move from deeper waters to shallow coastal waters, the fundamental wave parameters will change and the wave energy is redistributed along wave crests due to the depth variation, the presence of islands, coastal protection structures, irregularities of the enclosing shore boundaries, and other geological features. Moreover, waves undergo severe change inside the surf zone where wave breaking occurs and in the regions where reflected waves from coastline and structural boundaries interact with the incident waves. Therefore, the application of mild-slope equation model in this field would help for understanding of wave transformation mechanism where many other models could not deal with up to now. The purpose of this study is to form a extended mild-slope equation wave model and make comparison and analysis on variation of harbor responses in the vicinities of Pohang Old Harbor and Pohang New Port, etc. due to construction of New Port in Youngil Bay. This type of trial might be a milestone for port development in macroscale, where the induced impact analysis in the existing port due to the development could be easily neglected.

RESEARCH ON SPACE ENVIRONMENTAL EFFECT OF ORGANIC COMPOSITE MATERIALS FOR THERMAL MANAGEMENT OF SATELLITES USING MC-50 CYCLOTRON (MC-50 싸이클로트론을 이용한 위성용 열조절 유기복합재료의 우주환경 영향 연구)

  • Kim, Dae-Weon;Kim, Dong-Iel;Huh, Yong-Hak;Yang, Tae-Keun;Lee, Ho-Young;Kim, Yong-Hyup
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.441-450
    • /
    • 2005
  • The organic material is one of the most popular material for the satellites and the spacecrafts in order to perform the thermal management, and to protect direct exposure from the space environment. The present paper observes material property changes of organic material under the space environment by using ground facilities. One of the representative organic thermal management material of satellites, 2 mil ITO(Indium Tin Oxide) coated aluminized KAPTON was selected for experiments. In order to investigate the single parametric effect of protons in space environment, MC-50 cyclotron system in KIRAMS(Korea Institute of Radiological and Medical Science) was utilized for the ion beam irradiation of protons and ion beam dose was set to the Very Large August 1972 EVENT model, the highest protons occurrence near the earth orbit in history. The energy of ion beam is fixed to 30MeV(mesa electron volt), observed average energy, and the equivalent irradiance time conditions were set to 1-year, 3-year, 5-year and 10-year exposure in space. The procedure of analyses includes the measurement of the ultimate tensile strength for the assessment of quantitative degradation in material properties, and the imaging analyses of crystalline transformation and damages on the exposed surface by FE-SEM(Field Emission Scanning Electron Spectroscopy) etc.

A Linear Wave Equation Over Mild-Sloped Bed from Double Integration (이중적분을 이용한 완경사면에서의 선형파 방정식)

  • Kim, Hyo-Seob;Jung, Byung-Soon;Lee, Ye-Won
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.165-172
    • /
    • 2009
  • A set of equations for description of transformation of harmonic waves is proposed here. Velocity potential function and separation of variables are introduced for the derivation. The continuity equation is in a vertical plane is integrated through the water so that a horizontal one-dimensional wave equation is produced. The new equation composed of the complex velocity potential function, further be modified into. A set up of equations composed of the wave amplitude and wave phase gradient. The horizontally one-dimensional equations on the wave amplitude and wave phase gradient are the first and second-order ordinary differential equations. They are solved in a one-way marching manner starting from a side where boundary values are supplied, i.e. the wave amplitude, the wave amplitude gradient, and the wave phase gradient. Simple spatially-centered finite difference schemes are adopted for the present set of equations. The equations set is applied to three test cases, Booij's inclined plane slope profile, Massel's smooth bed profile, and Bragg's wavy bed profile. The present equations set is satisfactorily verified against existing theories including Massel's modified mild-slope equation, Berkhoff's mild-slope equation, and the full linear equation.

  • PDF

Changes in the Characteristics of Dissolved Organic Matter by Microbial Transformation and the Subsequent Effects on Copper Binding (생분해에 따른 용존 유기물질 성상 및 중금속 구리와의 결합특성 변화)

  • Jung, Ka-Young;Hur, Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.1
    • /
    • pp.49-54
    • /
    • 2012
  • Microbial changes in the characteristics of dissolved organic matter (DOM) and the subsequent effects on the conditional stability constants of copper were investigated using 14 day-incubations of Pony Lake fulvic acid (PLFA), Suwannee River fulvic acid (SRFA) and the mixtures of the humic substances and glucose. After incubation, dissolved organic carbon (DOC) concentrations were diminished, and specific UV absorbance values and DOC-normalized fluorescence intensities increased. The microbial changes were minimal for the samples contaning humic substances only whereas they were much pronounced for the mixtures with glucose. The extent of the changes increased with a higher content of glucose in the mixtures. The same trend was observed even for glucose solution. Our results suggest that labile organic moieties may be transformed into more chromophoric and humidified components by biodegradation. For the mixture samples, the copper binding stability constants did not change or even decreased after incubation. Therefore, microbially induced enrichment of the fulvic- and humic-like carbon structures in DOM appears to result in little change or the decrease of the copper binding coefficients.

In-situ Precipitation of Arsenic and Copper in Soil by Microbiological Sulfate Reduction (미생물학적 황산염 환원에 의한 토양 내 비소와 구리의 원위치 침전)

  • Jang, Hae-Young;Chon, Hyo-Taek;Lee, Jong-Un
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.445-455
    • /
    • 2009
  • Microbiological sulfate reduction is the transformation of sulfate to sulfide catalyzed by the activity of sulfate-reducing bacteria using sulfate as an electron acceptor. Low solubility of metal sulfides leads to precipitation of the sulfides in solution. The effects of microbiological sulfate reduction on in-situ precipitation of arsenic and copper were investigated for the heavy metal-contaminated soil around the Songcheon Au-Ag mine site. Total concentrations of As, Cu, and Pb were 1,311 mg/kg, 146 mg/kg, and 294 mg/kg, respectively, after aqua regia digestion. In batch-type experiments, indigenous sulfate-reducing bacteria rapidly decreased sulfate concentration and redox potential and led to substantial removal of dissolved As and Cu from solution. Optimal concentrations of carbon source and sulfate for effective microbial sulfate reduction were 0.2~0.5% (w/v) and 100~200 mg/L, respectively. More than 98% of injected As and Cu were removed in the effluents from both microbial and chemical columns designed for metal sulfides to be precipitated. However, after the injection of oxygen-rich solution, the microbial column showed the enhanced long-term stability of in-situ precipitated metals when compared with the chemical column which showed immediate increase in dissolved As and Cu due to oxidative dissolution of the sulfides. Black precipitates formed in the microbial column during the experiments and were identified as iron sulfide and copper sulfide. Arsenic was observed to be adsorbed on surface of iron sulfide precipitate.

A Study on Policy Trends and Location Pattern Changes in Smart Green-Related Industries (스마트그린 관련 산업의 정책동향과 입지패턴 변화 연구)

  • Young Sun Lee;Sun Bae Kim
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.38-52
    • /
    • 2024
  • Digital transformation industry contributes to the improvement of productivity in overall industrial production, the smart green industry for carbon neutrality and sustainable growth is growing as a future industry. The purpose of this paper is to explore the status and role of the industry in the future industry innovation ecosystem through the analysis of the growth drivers and location pattern changes of the smart green industry. The industry is on the rise in both metropolitan and non-metropolitan areas, and the growth of the industry can be seen in non-metropolitan and non-urban areas. In particular, due to the smart green industrial complex pilot project, the creation of Gwangju Jeonnam Innovation City, and the promotion of new and renewable energy policies, the emergence of core aggregation areas (HH type) in the coastal areas of Honam and Chungcheongnam-do, and the formation of isolated centers (HL type) in the Gyeongsang region, new and renewable energy production companies are being accumulated in non-metropolitan areas. Therefore, the smart green industry is expected to promote the formation of various specialized spokes in non-urban areas in the future industrial innovation ecosystem that forms a multipolar hub-spoke network structure, where policy factors are the triggers for growth.