• Title/Summary/Keyword: energy transfer function

Search Result 352, Processing Time 0.024 seconds

TDDFT Potential Energy Functions for Excited State Intramolecular Proton Transfer of Salicylic Acid, 3-Aminosalicylic Acid, 5-Aminosalicylic Acid, and 5-Methoxysalicylic Acid

  • Jang, Sung-Woo;Jin, Sung-Il;Park, Chan-Ryang
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2343-2353
    • /
    • 2007
  • We report the application of time-dependent density functional theory (TDDFT) to the calculation of potential energy profile relevant to the excited state intramolecular proton transfer (ESIPT) processes in title molecules. The TDDFT single point energy calculations along the reaction path have been performed using the CIS optimized structure in the excited state. In addition to the Stokes shifts, the transition energies including absorption, fluorescence, and 0-0 transition are estimated from the TDDFT potential energy profiles along the proton transfer coordinate. The excited state TDDFT potential energy profile of SA and 3ASA resulted in very flat function of the OH distance in the range ROH = 1.0-1.6 A, in contrast to the relatively deep single minimum function in the ground state. Furthermore, we obtained very shallow double minima in the excited state potential energy profile of SA and 3ASA in contrast to the single minimum observed in the previous work. The change of potential energy profile along the reaction path induced by the substitution of electron donating groups (-NH2 and -OCH3) at different sites has been investigated. Substitution at para position with respect to the phenolic OH group showed strong suppression of excited state proton dislocation compared with unsubstitued SA, while substitution at ortho position hardly affected the shape of the ESIPT curve. The TDDFT results are discussed in comparison with those of CASPT2 method.

Wind Turbine Power Performance Testing using Nacelle Transfer Function (나셀 변환 함수를 이용한 풍력터빈 출력성능평가)

  • Kim, Hyeon-Wu;Ko, Kyung-Nam;Huh, Jong-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.4
    • /
    • pp.51-58
    • /
    • 2013
  • A study on power performance testing of a wind turbine which has no met-mast at a distance of 2~4 rotor diameter was carried out using the Nacelle Transfer Function, NTF, according to IEC 61400-12-2. The wind data for this study was measured at HanKyoung wind farm of Jeju Island. The NTF was modeled using the correlation between wind speeds from the met-mast and from the wind turbine nacelle within 2~4 rotor diameter from the met-mast. The NTF was verified by the comparison of estimated Annual Energy Productions, AEPs, and binned power curves. The Nacelle Power Curve, NPC, was derived from the nacelle wind speed data corrected by NTF. The NPC of wind turbine under test and the power curve offered by the turbine manufacturer were compared to check whether the wind turbine is properly generating electricity. Overall the NPC was in good agreement with the manufacturer's power curve. The result showed power performance testing for a wind turbine which has no met-mast at a distance of 2~4 rotor diameter was successfully carried out in compliance with IEC 61400-12-2.

Effects of Thermal Interaction on Natural Convection From Discrete Heat Sources Mounted on a Vertical Plate (수직평판에 부착된 불연속 열원에 의한 자연대류에서 열원간의 열적 상호간섭에 관한 연구)

  • Park, H.S.;Choo, H.L.;Riu, K.J.
    • Solar Energy
    • /
    • v.18 no.4
    • /
    • pp.39-47
    • /
    • 1998
  • The natural convection heat transfer in a vertical plate with discrete heat sources was studied experimentally. The particular interest was the thermal interaction of the heat sources. In this study, the radiative and conductive heat transfer were considered as heat loss, Thus, the net convective heat transfer rate was presented as adiabatic temperature and thermal wake function. As a results, for non-uniform heating condition, heat input ratio(q1/q2) was most dominant parameter for the thermal wake function. The convective heat transfer rate is decreased with the increasing of channel ratio. For the range of $7.50{\times}10^5<Rac<8.66{\times}10^6$, a useful correlation was proposed as a function of channel Rayleigh number.

  • PDF

Optimization Application for Assessment of Total Transfer Capability Using Transient Energy Function in Interconnection Systems (과도에너지 함수를 이용하여 연계계통의 총송전용량 평가를 위한 최적화기법 응용)

  • Kim, Kyu-Ho;Kim, Soo-Nam;Rhee, Sang-Bong;Lee, Sang-Keun;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2311-2315
    • /
    • 2009
  • This paper presents a method to apply energy margin for assesment of total transfer capability (TTC). In order to calculate energy margin, two values of the transient energy function have to be computed. The first value is transient energy that is the sum of kinetic and potential energy at the end of fault. The second is critical energy that is potential energy at controlling UEP(Unstable Equilibrium Point). It is seen that TTC level is determined by not only bus voltage magnitudes and line thermal limits but also transient stability. TTC assessment is compared by the repeated power flow(RPF) method and optimization method.

Balancing of Routing Energy Consumption in Wireless Ad-hoc Networks (무선 Ad-hoc 망에서 라우팅 에너지 소비의 균형 기법)

  • 강용혁;엄영익
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2000.11a
    • /
    • pp.97-101
    • /
    • 2000
  • Energy consumption is considered as a principal ingredient in mobile wireless ad-hoc networks. In such a network, most of mobile nodes takes a role in forwarding messages received from neighbor nodes. Energy of these nodes is consumed in different rates depending on message traffic routes. This paper proposes a scheme to balance routing energy consumption by transferring routing function from node with small residual energy to node with enough residual energy. This scheme requires additional local message transfer, increasing the energy consumption of nodes to transfer routing function, and increasing total energy consumption of ad-hoc network. But balancing of energy consumption make the system lifetime the longer and increase the average node lifetime.

  • PDF

A study on the ATC(Available Transfer Capabilily) calculation using an Energy Function Method (에너지함수법을 이용한 가용송전용량(ATC) 계산에 관한 연구)

  • Kim, Jae-Hyeon;Jeong, Sung-Won;Kim, Yong-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.2
    • /
    • pp.94-100
    • /
    • 2008
  • Available transfer capability(ATC) quantifies the viable increase in real power transfer from one point to another in a power system. ATC calculation has predominantly focussed on steady-state viability. But ATC assessment with transient stability constraints has a dominant part in overall ATC calculation. ATC assessment requires a reputation of (n-1) security assessment with constraints of thermal limits, voltage stability and dynamic stability. An estimation of determinant contingency screening method is used for computing eigenvalue of Jacobian matrix. This paper proposed a methods to ATC calculation using energy function. Constraints is used thermal limits, voltage stability and transient stability.

Characterization of digital radiography system (디지탈 X-선 촬영시스템의 영상특성 분석)

  • 김종효;신동익;박광석;민병구;이충웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.701-705
    • /
    • 1988
  • We have investigated imaging performance of digital rediography system by measured several imaging properties such as sensitivity characteristic, scatter fraction, modulation transfer function and detective quentum efficiency. The results show that digital rediography system has linear sesitivity to incident energy, excellent scatter elliminaility and high detective quentum efficiency, but poor modulatio transfer function.

  • PDF

System-Level Analysis of Receiver Diversity in SWIPT-Enabled Cellular Networks

  • Lam, Thanh Tu;Renzo, Marco Di;Coon, Justin P.
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.926-937
    • /
    • 2016
  • In this paper, we study the feasibility of receiver diversity for application to downlink cellular networks, where low-energy devices are equipped with information decoding and energy harvesting receivers for simultaneous wireless information and power transfer. We compare several options that are based on selection combining and maximum ratio combining, which provide different implementation complexities. By capitalizing on the Frechet inequality, we shed light on the advantages and limitations of each scheme as a function of the transmission rate and harvested power that need to be fulfilled at the low-energy devices. Our analysis shows that no scheme outperforms the others for every system setup. It suggests, on the other hand, that the low-energy devices need to operate in an adaptive fashion, by choosing the receiver diversity scheme as a function of the imposed requirements. With the aid of stochastic geometry, we introduce mathematical frameworks for system-level analysis. We show that they constitute an important tool for system-level optimization and, in particular, for identifying the diversity scheme that optimizes wireless information and power transmission as a function of a sensible set of parameters. Monte Carlo simulations are used to validate our findings and to illustrate the trade-off that emerge in cellular networks with simultaneous wireless information and power transfer.